1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2007 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_NETWORK_SIMPLEX_H |
---|
20 | #define LEMON_NETWORK_SIMPLEX_H |
---|
21 | |
---|
22 | /// \ingroup min_cost_flow |
---|
23 | /// |
---|
24 | /// \file |
---|
25 | /// \brief The network simplex algorithm for finding a minimum cost |
---|
26 | /// flow. |
---|
27 | |
---|
28 | #include <limits> |
---|
29 | #include <lemon/smart_graph.h> |
---|
30 | #include <lemon/graph_utils.h> |
---|
31 | |
---|
32 | /// \brief The pivot rule used in the algorithm. |
---|
33 | //#define FIRST_ELIGIBLE_PIVOT |
---|
34 | //#define BEST_ELIGIBLE_PIVOT |
---|
35 | #define EDGE_BLOCK_PIVOT |
---|
36 | //#define CANDIDATE_LIST_PIVOT |
---|
37 | //#define SORTED_LIST_PIVOT |
---|
38 | |
---|
39 | //#define _DEBUG_ITER_ |
---|
40 | |
---|
41 | |
---|
42 | /// \brief State constant for edges at their lower bounds. |
---|
43 | #define LOWER 1 |
---|
44 | /// \brief State constant for edges in the spanning tree. |
---|
45 | #define TREE 0 |
---|
46 | /// \brief State constant for edges at their upper bounds. |
---|
47 | #define UPPER -1 |
---|
48 | |
---|
49 | #ifdef EDGE_BLOCK_PIVOT |
---|
50 | /// \brief Number of blocks for the "Edge Block" pivot rule. |
---|
51 | #define BLOCK_NUM 100 |
---|
52 | /// \brief Lower bound for the size of blocks. |
---|
53 | #define MIN_BLOCK_SIZE 10 |
---|
54 | #endif |
---|
55 | |
---|
56 | #ifdef CANDIDATE_LIST_PIVOT |
---|
57 | #include <list> |
---|
58 | /// \brief The maximum length of the edge list for the |
---|
59 | /// "Candidate List" pivot rule. |
---|
60 | #define LIST_LENGTH 100 |
---|
61 | /// \brief The maximum number of minor iterations between two major |
---|
62 | /// itarations. |
---|
63 | #define MINOR_LIMIT 10 |
---|
64 | #endif |
---|
65 | |
---|
66 | #ifdef SORTED_LIST_PIVOT |
---|
67 | #include <deque> |
---|
68 | #include <algorithm> |
---|
69 | /// \brief The maximum length of the edge list for the |
---|
70 | /// "Sorted List" pivot rule. |
---|
71 | #define LIST_LENGTH 500 |
---|
72 | #define LOWER_DIV 3 |
---|
73 | #endif |
---|
74 | |
---|
75 | namespace lemon { |
---|
76 | |
---|
77 | /// \addtogroup min_cost_flow |
---|
78 | /// @{ |
---|
79 | |
---|
80 | /// \brief Implementation of the network simplex algorithm for |
---|
81 | /// finding a minimum cost flow. |
---|
82 | /// |
---|
83 | /// \ref lemon::NetworkSimplex "NetworkSimplex" implements the |
---|
84 | /// network simplex algorithm for finding a minimum cost flow. |
---|
85 | /// |
---|
86 | /// \param Graph The directed graph type the algorithm runs on. |
---|
87 | /// \param LowerMap The type of the lower bound map. |
---|
88 | /// \param CapacityMap The type of the capacity (upper bound) map. |
---|
89 | /// \param CostMap The type of the cost (length) map. |
---|
90 | /// \param SupplyMap The type of the supply map. |
---|
91 | /// |
---|
92 | /// \warning |
---|
93 | /// - Edge capacities and costs should be nonnegative integers. |
---|
94 | /// However \c CostMap::Value should be signed type. |
---|
95 | /// - Supply values should be integers. |
---|
96 | /// - \c LowerMap::Value must be convertible to |
---|
97 | /// \c CapacityMap::Value and \c CapacityMap::Value must be |
---|
98 | /// convertible to \c SupplyMap::Value. |
---|
99 | /// |
---|
100 | /// \author Peter Kovacs |
---|
101 | |
---|
102 | template < typename Graph, |
---|
103 | typename LowerMap = typename Graph::template EdgeMap<int>, |
---|
104 | typename CapacityMap = LowerMap, |
---|
105 | typename CostMap = typename Graph::template EdgeMap<int>, |
---|
106 | typename SupplyMap = typename Graph::template NodeMap |
---|
107 | <typename CapacityMap::Value> > |
---|
108 | class NetworkSimplex |
---|
109 | { |
---|
110 | typedef typename LowerMap::Value Lower; |
---|
111 | typedef typename CapacityMap::Value Capacity; |
---|
112 | typedef typename CostMap::Value Cost; |
---|
113 | typedef typename SupplyMap::Value Supply; |
---|
114 | |
---|
115 | typedef SmartGraph SGraph; |
---|
116 | typedef typename SGraph::Node Node; |
---|
117 | typedef typename SGraph::NodeIt NodeIt; |
---|
118 | typedef typename SGraph::Edge Edge; |
---|
119 | typedef typename SGraph::EdgeIt EdgeIt; |
---|
120 | typedef typename SGraph::InEdgeIt InEdgeIt; |
---|
121 | typedef typename SGraph::OutEdgeIt OutEdgeIt; |
---|
122 | |
---|
123 | typedef typename SGraph::template EdgeMap<Lower> SLowerMap; |
---|
124 | typedef typename SGraph::template EdgeMap<Capacity> SCapacityMap; |
---|
125 | typedef typename SGraph::template EdgeMap<Cost> SCostMap; |
---|
126 | typedef typename SGraph::template NodeMap<Supply> SSupplyMap; |
---|
127 | typedef typename SGraph::template NodeMap<Cost> SPotentialMap; |
---|
128 | |
---|
129 | typedef typename SGraph::template NodeMap<int> IntNodeMap; |
---|
130 | typedef typename SGraph::template NodeMap<bool> BoolNodeMap; |
---|
131 | typedef typename SGraph::template NodeMap<Node> NodeNodeMap; |
---|
132 | typedef typename SGraph::template NodeMap<Edge> EdgeNodeMap; |
---|
133 | typedef typename SGraph::template EdgeMap<int> IntEdgeMap; |
---|
134 | |
---|
135 | typedef typename Graph::template NodeMap<Node> NodeRefMap; |
---|
136 | typedef typename Graph::template EdgeMap<Edge> EdgeRefMap; |
---|
137 | |
---|
138 | public: |
---|
139 | |
---|
140 | /// \brief The type of the flow map. |
---|
141 | typedef typename Graph::template EdgeMap<Capacity> FlowMap; |
---|
142 | /// \brief The type of the potential map. |
---|
143 | typedef typename Graph::template NodeMap<Cost> PotentialMap; |
---|
144 | |
---|
145 | protected: |
---|
146 | |
---|
147 | /// \brief Map adaptor class for handling reduced edge costs. |
---|
148 | class ReducedCostMap : public MapBase<Edge, Cost> |
---|
149 | { |
---|
150 | private: |
---|
151 | |
---|
152 | const SGraph &gr; |
---|
153 | const SCostMap &cost_map; |
---|
154 | const SPotentialMap &pot_map; |
---|
155 | |
---|
156 | public: |
---|
157 | |
---|
158 | typedef typename MapBase<Edge, Cost>::Value Value; |
---|
159 | typedef typename MapBase<Edge, Cost>::Key Key; |
---|
160 | |
---|
161 | ReducedCostMap( const SGraph &_gr, |
---|
162 | const SCostMap &_cm, |
---|
163 | const SPotentialMap &_pm ) : |
---|
164 | gr(_gr), cost_map(_cm), pot_map(_pm) {} |
---|
165 | |
---|
166 | Value operator[](const Key &e) const { |
---|
167 | return cost_map[e] - pot_map[gr.source(e)] + pot_map[gr.target(e)]; |
---|
168 | } |
---|
169 | |
---|
170 | }; //class ReducedCostMap |
---|
171 | |
---|
172 | protected: |
---|
173 | |
---|
174 | /// \brief The directed graph the algorithm runs on. |
---|
175 | SGraph graph; |
---|
176 | /// \brief The original graph. |
---|
177 | const Graph &graph_ref; |
---|
178 | /// \brief The original lower bound map. |
---|
179 | const LowerMap *lower; |
---|
180 | /// \brief The capacity map. |
---|
181 | SCapacityMap capacity; |
---|
182 | /// \brief The cost map. |
---|
183 | SCostMap cost; |
---|
184 | /// \brief The supply map. |
---|
185 | SSupplyMap supply; |
---|
186 | /// \brief The reduced cost map. |
---|
187 | ReducedCostMap red_cost; |
---|
188 | /// \brief The sum of supply values equals zero. |
---|
189 | bool valid_supply; |
---|
190 | |
---|
191 | /// \brief The edge map of the current flow. |
---|
192 | SCapacityMap flow; |
---|
193 | /// \brief The edge map of the found flow on the original graph. |
---|
194 | FlowMap flow_result; |
---|
195 | /// \brief The potential node map. |
---|
196 | SPotentialMap potential; |
---|
197 | /// \brief The potential node map on the original graph. |
---|
198 | PotentialMap potential_result; |
---|
199 | |
---|
200 | /// \brief Node reference for the original graph. |
---|
201 | NodeRefMap node_ref; |
---|
202 | /// \brief Edge reference for the original graph. |
---|
203 | EdgeRefMap edge_ref; |
---|
204 | |
---|
205 | /// \brief The depth node map of the spanning tree structure. |
---|
206 | IntNodeMap depth; |
---|
207 | /// \brief The parent node map of the spanning tree structure. |
---|
208 | NodeNodeMap parent; |
---|
209 | /// \brief The pred_edge node map of the spanning tree structure. |
---|
210 | EdgeNodeMap pred_edge; |
---|
211 | /// \brief The thread node map of the spanning tree structure. |
---|
212 | NodeNodeMap thread; |
---|
213 | /// \brief The forward node map of the spanning tree structure. |
---|
214 | BoolNodeMap forward; |
---|
215 | /// \brief The state edge map. |
---|
216 | IntEdgeMap state; |
---|
217 | |
---|
218 | |
---|
219 | #ifdef EDGE_BLOCK_PIVOT |
---|
220 | /// \brief The size of blocks for the "Edge Block" pivot rule. |
---|
221 | int block_size; |
---|
222 | #endif |
---|
223 | #ifdef CANDIDATE_LIST_PIVOT |
---|
224 | /// \brief The list of candidate edges for the "Candidate List" |
---|
225 | /// pivot rule. |
---|
226 | std::list<Edge> candidates; |
---|
227 | /// \brief The number of minor iterations. |
---|
228 | int minor_count; |
---|
229 | #endif |
---|
230 | #ifdef SORTED_LIST_PIVOT |
---|
231 | /// \brief The list of candidate edges for the "Sorted List" |
---|
232 | /// pivot rule. |
---|
233 | std::deque<Edge> candidates; |
---|
234 | #endif |
---|
235 | |
---|
236 | // Root node of the starting spanning tree. |
---|
237 | Node root; |
---|
238 | // The entering edge of the current pivot iteration. |
---|
239 | Edge in_edge; |
---|
240 | // Temporary nodes used in the current pivot iteration. |
---|
241 | Node join, u_in, v_in, u_out, v_out; |
---|
242 | Node right, first, second, last; |
---|
243 | Node stem, par_stem, new_stem; |
---|
244 | // The maximum augment amount along the cycle in the current pivot |
---|
245 | // iteration. |
---|
246 | Capacity delta; |
---|
247 | |
---|
248 | public : |
---|
249 | |
---|
250 | /// \brief General constructor of the class (with lower bounds). |
---|
251 | /// |
---|
252 | /// General constructor of the class (with lower bounds). |
---|
253 | /// |
---|
254 | /// \param _graph The directed graph the algorithm runs on. |
---|
255 | /// \param _lower The lower bounds of the edges. |
---|
256 | /// \param _capacity The capacities (upper bounds) of the edges. |
---|
257 | /// \param _cost The cost (length) values of the edges. |
---|
258 | /// \param _supply The supply values of the nodes (signed). |
---|
259 | NetworkSimplex( const Graph &_graph, |
---|
260 | const LowerMap &_lower, |
---|
261 | const CapacityMap &_capacity, |
---|
262 | const CostMap &_cost, |
---|
263 | const SupplyMap &_supply ) : |
---|
264 | graph_ref(_graph), lower(&_lower), capacity(graph), cost(graph), |
---|
265 | supply(graph), flow(graph), flow_result(_graph), potential(graph), |
---|
266 | potential_result(_graph), depth(graph), parent(graph), |
---|
267 | pred_edge(graph), thread(graph), forward(graph), state(graph), |
---|
268 | node_ref(graph_ref), edge_ref(graph_ref), |
---|
269 | red_cost(graph, cost, potential) |
---|
270 | { |
---|
271 | // Checking the sum of supply values |
---|
272 | Supply sum = 0; |
---|
273 | for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) |
---|
274 | sum += _supply[n]; |
---|
275 | if (!(valid_supply = sum == 0)) return; |
---|
276 | |
---|
277 | // Copying graph_ref to graph |
---|
278 | copyGraph(graph, graph_ref) |
---|
279 | .edgeMap(cost, _cost) |
---|
280 | .nodeRef(node_ref) |
---|
281 | .edgeRef(edge_ref) |
---|
282 | .run(); |
---|
283 | |
---|
284 | // Removing nonzero lower bounds |
---|
285 | for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) { |
---|
286 | capacity[edge_ref[e]] = _capacity[e] - _lower[e]; |
---|
287 | } |
---|
288 | for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) { |
---|
289 | Supply s = _supply[n]; |
---|
290 | for (typename Graph::InEdgeIt e(graph_ref, n); e != INVALID; ++e) |
---|
291 | s += _lower[e]; |
---|
292 | for (typename Graph::OutEdgeIt e(graph_ref, n); e != INVALID; ++e) |
---|
293 | s -= _lower[e]; |
---|
294 | supply[node_ref[n]] = s; |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | /// \brief General constructor of the class (without lower bounds). |
---|
299 | /// |
---|
300 | /// General constructor of the class (without lower bounds). |
---|
301 | /// |
---|
302 | /// \param _graph The directed graph the algorithm runs on. |
---|
303 | /// \param _capacity The capacities (upper bounds) of the edges. |
---|
304 | /// \param _cost The cost (length) values of the edges. |
---|
305 | /// \param _supply The supply values of the nodes (signed). |
---|
306 | NetworkSimplex( const Graph &_graph, |
---|
307 | const CapacityMap &_capacity, |
---|
308 | const CostMap &_cost, |
---|
309 | const SupplyMap &_supply ) : |
---|
310 | graph_ref(_graph), lower(NULL), capacity(graph), cost(graph), |
---|
311 | supply(graph), flow(graph), flow_result(_graph), potential(graph), |
---|
312 | potential_result(_graph), depth(graph), parent(graph), |
---|
313 | pred_edge(graph), thread(graph), forward(graph), state(graph), |
---|
314 | node_ref(graph_ref), edge_ref(graph_ref), |
---|
315 | red_cost(graph, cost, potential) |
---|
316 | { |
---|
317 | // Checking the sum of supply values |
---|
318 | Supply sum = 0; |
---|
319 | for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) |
---|
320 | sum += _supply[n]; |
---|
321 | if (!(valid_supply = sum == 0)) return; |
---|
322 | |
---|
323 | // Copying graph_ref to graph |
---|
324 | copyGraph(graph, graph_ref) |
---|
325 | .edgeMap(capacity, _capacity) |
---|
326 | .edgeMap(cost, _cost) |
---|
327 | .nodeMap(supply, _supply) |
---|
328 | .nodeRef(node_ref) |
---|
329 | .edgeRef(edge_ref) |
---|
330 | .run(); |
---|
331 | } |
---|
332 | |
---|
333 | /// \brief Simple constructor of the class (with lower bounds). |
---|
334 | /// |
---|
335 | /// Simple constructor of the class (with lower bounds). |
---|
336 | /// |
---|
337 | /// \param _graph The directed graph the algorithm runs on. |
---|
338 | /// \param _lower The lower bounds of the edges. |
---|
339 | /// \param _capacity The capacities (upper bounds) of the edges. |
---|
340 | /// \param _cost The cost (length) values of the edges. |
---|
341 | /// \param _s The source node. |
---|
342 | /// \param _t The target node. |
---|
343 | /// \param _flow_value The required amount of flow from node \c _s |
---|
344 | /// to node \c _t (i.e. the supply of \c _s and the demand of |
---|
345 | /// \c _t). |
---|
346 | NetworkSimplex( const Graph &_graph, |
---|
347 | const LowerMap &_lower, |
---|
348 | const CapacityMap &_capacity, |
---|
349 | const CostMap &_cost, |
---|
350 | typename Graph::Node _s, |
---|
351 | typename Graph::Node _t, |
---|
352 | typename SupplyMap::Value _flow_value ) : |
---|
353 | graph_ref(_graph), lower(&_lower), capacity(graph), cost(graph), |
---|
354 | supply(graph), flow(graph), flow_result(_graph), potential(graph), |
---|
355 | potential_result(_graph), depth(graph), parent(graph), |
---|
356 | pred_edge(graph), thread(graph), forward(graph), state(graph), |
---|
357 | node_ref(graph_ref), edge_ref(graph_ref), |
---|
358 | red_cost(graph, cost, potential) |
---|
359 | { |
---|
360 | // Copying graph_ref to graph |
---|
361 | copyGraph(graph, graph_ref) |
---|
362 | .edgeMap(cost, _cost) |
---|
363 | .nodeRef(node_ref) |
---|
364 | .edgeRef(edge_ref) |
---|
365 | .run(); |
---|
366 | |
---|
367 | // Removing nonzero lower bounds |
---|
368 | for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) { |
---|
369 | capacity[edge_ref[e]] = _capacity[e] - _lower[e]; |
---|
370 | } |
---|
371 | for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) { |
---|
372 | Supply s = 0; |
---|
373 | if (n == _s) s = _flow_value; |
---|
374 | if (n == _t) s = -_flow_value; |
---|
375 | for (typename Graph::InEdgeIt e(graph_ref, n); e != INVALID; ++e) |
---|
376 | s += _lower[e]; |
---|
377 | for (typename Graph::OutEdgeIt e(graph_ref, n); e != INVALID; ++e) |
---|
378 | s -= _lower[e]; |
---|
379 | supply[node_ref[n]] = s; |
---|
380 | } |
---|
381 | valid_supply = true; |
---|
382 | } |
---|
383 | |
---|
384 | /// \brief Simple constructor of the class (without lower bounds). |
---|
385 | /// |
---|
386 | /// Simple constructor of the class (without lower bounds). |
---|
387 | /// |
---|
388 | /// \param _graph The directed graph the algorithm runs on. |
---|
389 | /// \param _capacity The capacities (upper bounds) of the edges. |
---|
390 | /// \param _cost The cost (length) values of the edges. |
---|
391 | /// \param _s The source node. |
---|
392 | /// \param _t The target node. |
---|
393 | /// \param _flow_value The required amount of flow from node \c _s |
---|
394 | /// to node \c _t (i.e. the supply of \c _s and the demand of |
---|
395 | /// \c _t). |
---|
396 | NetworkSimplex( const Graph &_graph, |
---|
397 | const CapacityMap &_capacity, |
---|
398 | const CostMap &_cost, |
---|
399 | typename Graph::Node _s, |
---|
400 | typename Graph::Node _t, |
---|
401 | typename SupplyMap::Value _flow_value ) : |
---|
402 | graph_ref(_graph), lower(NULL), capacity(graph), cost(graph), |
---|
403 | supply(graph, 0), flow(graph), flow_result(_graph), potential(graph), |
---|
404 | potential_result(_graph), depth(graph), parent(graph), |
---|
405 | pred_edge(graph), thread(graph), forward(graph), state(graph), |
---|
406 | node_ref(graph_ref), edge_ref(graph_ref), |
---|
407 | red_cost(graph, cost, potential) |
---|
408 | { |
---|
409 | // Copying graph_ref to graph |
---|
410 | copyGraph(graph, graph_ref) |
---|
411 | .edgeMap(capacity, _capacity) |
---|
412 | .edgeMap(cost, _cost) |
---|
413 | .nodeRef(node_ref) |
---|
414 | .edgeRef(edge_ref) |
---|
415 | .run(); |
---|
416 | supply[node_ref[_s]] = _flow_value; |
---|
417 | supply[node_ref[_t]] = -_flow_value; |
---|
418 | valid_supply = true; |
---|
419 | } |
---|
420 | |
---|
421 | /// \brief Returns a const reference to the flow map. |
---|
422 | /// |
---|
423 | /// Returns a const reference to the flow map. |
---|
424 | /// |
---|
425 | /// \pre \ref run() must be called before using this function. |
---|
426 | const FlowMap& flowMap() const { |
---|
427 | return flow_result; |
---|
428 | } |
---|
429 | |
---|
430 | /// \brief Returns a const reference to the potential map (the dual |
---|
431 | /// solution). |
---|
432 | /// |
---|
433 | /// Returns a const reference to the potential map (the dual |
---|
434 | /// solution). |
---|
435 | /// |
---|
436 | /// \pre \ref run() must be called before using this function. |
---|
437 | const PotentialMap& potentialMap() const { |
---|
438 | return potential_result; |
---|
439 | } |
---|
440 | |
---|
441 | /// \brief Returns the total cost of the found flow. |
---|
442 | /// |
---|
443 | /// Returns the total cost of the found flow. The complexity of the |
---|
444 | /// function is \f$ O(e) \f$. |
---|
445 | /// |
---|
446 | /// \pre \ref run() must be called before using this function. |
---|
447 | Cost totalCost() const { |
---|
448 | Cost c = 0; |
---|
449 | for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) |
---|
450 | c += flow_result[e] * cost[edge_ref[e]]; |
---|
451 | return c; |
---|
452 | } |
---|
453 | |
---|
454 | /// \brief Runs the algorithm. |
---|
455 | /// |
---|
456 | /// Runs the algorithm. |
---|
457 | /// |
---|
458 | /// \return \c true if a feasible flow can be found. |
---|
459 | bool run() { |
---|
460 | return init() && start(); |
---|
461 | } |
---|
462 | |
---|
463 | protected: |
---|
464 | |
---|
465 | /// \brief Extends the underlaying graph and initializes all the |
---|
466 | /// node and edge maps. |
---|
467 | bool init() { |
---|
468 | if (!valid_supply) return false; |
---|
469 | |
---|
470 | // Initializing state and flow maps |
---|
471 | for (EdgeIt e(graph); e != INVALID; ++e) { |
---|
472 | flow[e] = 0; |
---|
473 | state[e] = LOWER; |
---|
474 | } |
---|
475 | |
---|
476 | // Adding an artificial root node to the graph |
---|
477 | root = graph.addNode(); |
---|
478 | parent[root] = INVALID; |
---|
479 | pred_edge[root] = INVALID; |
---|
480 | depth[root] = supply[root] = potential[root] = 0; |
---|
481 | |
---|
482 | // Adding artificial edges to the graph and initializing the node |
---|
483 | // maps of the spanning tree data structure |
---|
484 | Supply sum = 0; |
---|
485 | Node last = root; |
---|
486 | Edge e; |
---|
487 | Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
---|
488 | for (NodeIt u(graph); u != INVALID; ++u) { |
---|
489 | if (u == root) continue; |
---|
490 | thread[last] = u; |
---|
491 | last = u; |
---|
492 | parent[u] = root; |
---|
493 | depth[u] = 1; |
---|
494 | sum += supply[u]; |
---|
495 | if (supply[u] >= 0) { |
---|
496 | e = graph.addEdge(u, root); |
---|
497 | flow[e] = supply[u]; |
---|
498 | forward[u] = true; |
---|
499 | potential[u] = max_cost; |
---|
500 | } else { |
---|
501 | e = graph.addEdge(root, u); |
---|
502 | flow[e] = -supply[u]; |
---|
503 | forward[u] = false; |
---|
504 | potential[u] = -max_cost; |
---|
505 | } |
---|
506 | cost[e] = max_cost; |
---|
507 | capacity[e] = std::numeric_limits<Capacity>::max(); |
---|
508 | state[e] = TREE; |
---|
509 | pred_edge[u] = e; |
---|
510 | } |
---|
511 | thread[last] = root; |
---|
512 | |
---|
513 | #ifdef EDGE_BLOCK_PIVOT |
---|
514 | // Initializing block_size for the edge block pivot rule |
---|
515 | int edge_num = countEdges(graph); |
---|
516 | block_size = edge_num >= BLOCK_NUM * MIN_BLOCK_SIZE ? |
---|
517 | edge_num / BLOCK_NUM : MIN_BLOCK_SIZE; |
---|
518 | #endif |
---|
519 | #ifdef CANDIDATE_LIST_PIVOT |
---|
520 | minor_count = 0; |
---|
521 | #endif |
---|
522 | |
---|
523 | return sum == 0; |
---|
524 | } |
---|
525 | |
---|
526 | #ifdef FIRST_ELIGIBLE_PIVOT |
---|
527 | /// \brief Finds entering edge according to the "First Eligible" |
---|
528 | /// pivot rule. |
---|
529 | bool findEnteringEdge(EdgeIt &next_edge) { |
---|
530 | for (EdgeIt e = next_edge; e != INVALID; ++e) { |
---|
531 | if (state[e] * red_cost[e] < 0) { |
---|
532 | in_edge = e; |
---|
533 | next_edge = ++e; |
---|
534 | return true; |
---|
535 | } |
---|
536 | } |
---|
537 | for (EdgeIt e(graph); e != next_edge; ++e) { |
---|
538 | if (state[e] * red_cost[e] < 0) { |
---|
539 | in_edge = e; |
---|
540 | next_edge = ++e; |
---|
541 | return true; |
---|
542 | } |
---|
543 | } |
---|
544 | return false; |
---|
545 | } |
---|
546 | #endif |
---|
547 | |
---|
548 | #ifdef BEST_ELIGIBLE_PIVOT |
---|
549 | /// \brief Finds entering edge according to the "Best Eligible" |
---|
550 | /// pivot rule. |
---|
551 | bool findEnteringEdge() { |
---|
552 | Cost min = 0; |
---|
553 | for (EdgeIt e(graph); e != INVALID; ++e) { |
---|
554 | if (state[e] * red_cost[e] < min) { |
---|
555 | min = state[e] * red_cost[e]; |
---|
556 | in_edge = e; |
---|
557 | } |
---|
558 | } |
---|
559 | return min < 0; |
---|
560 | } |
---|
561 | #endif |
---|
562 | |
---|
563 | #ifdef EDGE_BLOCK_PIVOT |
---|
564 | /// \brief Finds entering edge according to the "Edge Block" |
---|
565 | /// pivot rule. |
---|
566 | bool findEnteringEdge(EdgeIt &next_edge) { |
---|
567 | // Performing edge block selection |
---|
568 | Cost curr, min = 0; |
---|
569 | EdgeIt min_edge(graph); |
---|
570 | int cnt = 0; |
---|
571 | for (EdgeIt e = next_edge; e != INVALID; ++e) { |
---|
572 | if ((curr = state[e] * red_cost[e]) < min) { |
---|
573 | min = curr; |
---|
574 | min_edge = e; |
---|
575 | } |
---|
576 | if (++cnt == block_size) { |
---|
577 | if (min < 0) break; |
---|
578 | cnt = 0; |
---|
579 | } |
---|
580 | } |
---|
581 | if (!(min < 0)) { |
---|
582 | for (EdgeIt e(graph); e != next_edge; ++e) { |
---|
583 | if ((curr = state[e] * red_cost[e]) < min) { |
---|
584 | min = curr; |
---|
585 | min_edge = e; |
---|
586 | } |
---|
587 | if (++cnt == block_size) { |
---|
588 | if (min < 0) break; |
---|
589 | cnt = 0; |
---|
590 | } |
---|
591 | } |
---|
592 | } |
---|
593 | in_edge = min_edge; |
---|
594 | if ((next_edge = ++min_edge) == INVALID) |
---|
595 | next_edge = EdgeIt(graph); |
---|
596 | return min < 0; |
---|
597 | } |
---|
598 | #endif |
---|
599 | |
---|
600 | #ifdef CANDIDATE_LIST_PIVOT |
---|
601 | /// \brief Functor class for removing non-eligible edges from the |
---|
602 | /// candidate list. |
---|
603 | class RemoveFunc |
---|
604 | { |
---|
605 | private: |
---|
606 | const IntEdgeMap &st; |
---|
607 | const ReducedCostMap &rc; |
---|
608 | public: |
---|
609 | RemoveFunc(const IntEdgeMap &_st, const ReducedCostMap &_rc) : |
---|
610 | st(_st), rc(_rc) {} |
---|
611 | bool operator()(const Edge &e) { |
---|
612 | return st[e] * rc[e] >= 0; |
---|
613 | } |
---|
614 | }; |
---|
615 | |
---|
616 | /// \brief Finds entering edge according to the "Candidate List" |
---|
617 | /// pivot rule. |
---|
618 | bool findEnteringEdge() { |
---|
619 | static RemoveFunc remove_func(state, red_cost); |
---|
620 | typedef typename std::list<Edge>::iterator ListIt; |
---|
621 | |
---|
622 | candidates.remove_if(remove_func); |
---|
623 | if (minor_count >= MINOR_LIMIT || candidates.size() == 0) { |
---|
624 | // Major iteration |
---|
625 | for (EdgeIt e(graph); e != INVALID; ++e) { |
---|
626 | if (state[e] * red_cost[e] < 0) { |
---|
627 | candidates.push_back(e); |
---|
628 | if (candidates.size() == LIST_LENGTH) break; |
---|
629 | } |
---|
630 | } |
---|
631 | if (candidates.size() == 0) return false; |
---|
632 | } |
---|
633 | |
---|
634 | // Minor iteration |
---|
635 | ++minor_count; |
---|
636 | Cost min = 0; |
---|
637 | for (ListIt it = candidates.begin(); it != candidates.end(); ++it) { |
---|
638 | if (state[*it] * red_cost[*it] < min) { |
---|
639 | min = state[*it] * red_cost[*it]; |
---|
640 | in_edge = *it; |
---|
641 | } |
---|
642 | } |
---|
643 | return true; |
---|
644 | } |
---|
645 | #endif |
---|
646 | |
---|
647 | #ifdef SORTED_LIST_PIVOT |
---|
648 | /// \brief Functor class to compare edges during sort of the |
---|
649 | /// candidate list. |
---|
650 | class SortFunc |
---|
651 | { |
---|
652 | private: |
---|
653 | const IntEdgeMap &st; |
---|
654 | const ReducedCostMap &rc; |
---|
655 | public: |
---|
656 | SortFunc(const IntEdgeMap &_st, const ReducedCostMap &_rc) : |
---|
657 | st(_st), rc(_rc) {} |
---|
658 | bool operator()(const Edge &e1, const Edge &e2) { |
---|
659 | return st[e1] * rc[e1] < st[e2] * rc[e2]; |
---|
660 | } |
---|
661 | }; |
---|
662 | |
---|
663 | /// \brief Finds entering edge according to the "Sorted List" |
---|
664 | /// pivot rule. |
---|
665 | bool findEnteringEdge() { |
---|
666 | static SortFunc sort_func(state, red_cost); |
---|
667 | |
---|
668 | // Minor iteration |
---|
669 | while (candidates.size() > 0) { |
---|
670 | in_edge = candidates.front(); |
---|
671 | candidates.pop_front(); |
---|
672 | if (state[in_edge] * red_cost[in_edge] < 0) return true; |
---|
673 | } |
---|
674 | |
---|
675 | // Major iteration |
---|
676 | Cost curr, min = 0; |
---|
677 | for (EdgeIt e(graph); e != INVALID; ++e) { |
---|
678 | if ((curr = state[e] * red_cost[e]) < min / LOWER_DIV) { |
---|
679 | candidates.push_back(e); |
---|
680 | if (curr < min) min = curr; |
---|
681 | if (candidates.size() == LIST_LENGTH) break; |
---|
682 | } |
---|
683 | } |
---|
684 | if (candidates.size() == 0) return false; |
---|
685 | sort(candidates.begin(), candidates.end(), sort_func); |
---|
686 | in_edge = candidates.front(); |
---|
687 | candidates.pop_front(); |
---|
688 | return true; |
---|
689 | } |
---|
690 | #endif |
---|
691 | |
---|
692 | /// \brief Finds the join node. |
---|
693 | Node findJoinNode() { |
---|
694 | // Finding the join node |
---|
695 | Node u = graph.source(in_edge); |
---|
696 | Node v = graph.target(in_edge); |
---|
697 | while (u != v) { |
---|
698 | if (depth[u] == depth[v]) { |
---|
699 | u = parent[u]; |
---|
700 | v = parent[v]; |
---|
701 | } |
---|
702 | else if (depth[u] > depth[v]) u = parent[u]; |
---|
703 | else v = parent[v]; |
---|
704 | } |
---|
705 | return u; |
---|
706 | } |
---|
707 | |
---|
708 | /// \brief Finds the leaving edge of the cycle. Returns \c true if |
---|
709 | /// the leaving edge is not the same as the entering edge. |
---|
710 | bool findLeavingEdge() { |
---|
711 | // Initializing first and second nodes according to the direction |
---|
712 | // of the cycle |
---|
713 | if (state[in_edge] == LOWER) { |
---|
714 | first = graph.source(in_edge); |
---|
715 | second = graph.target(in_edge); |
---|
716 | } else { |
---|
717 | first = graph.target(in_edge); |
---|
718 | second = graph.source(in_edge); |
---|
719 | } |
---|
720 | delta = capacity[in_edge]; |
---|
721 | bool result = false; |
---|
722 | Capacity d; |
---|
723 | Edge e; |
---|
724 | |
---|
725 | // Searching the cycle along the path form the first node to the |
---|
726 | // root node |
---|
727 | for (Node u = first; u != join; u = parent[u]) { |
---|
728 | e = pred_edge[u]; |
---|
729 | d = forward[u] ? flow[e] : capacity[e] - flow[e]; |
---|
730 | if (d < delta) { |
---|
731 | delta = d; |
---|
732 | u_out = u; |
---|
733 | u_in = first; |
---|
734 | v_in = second; |
---|
735 | result = true; |
---|
736 | } |
---|
737 | } |
---|
738 | // Searching the cycle along the path form the second node to the |
---|
739 | // root node |
---|
740 | for (Node u = second; u != join; u = parent[u]) { |
---|
741 | e = pred_edge[u]; |
---|
742 | d = forward[u] ? capacity[e] - flow[e] : flow[e]; |
---|
743 | if (d <= delta) { |
---|
744 | delta = d; |
---|
745 | u_out = u; |
---|
746 | u_in = second; |
---|
747 | v_in = first; |
---|
748 | result = true; |
---|
749 | } |
---|
750 | } |
---|
751 | return result; |
---|
752 | } |
---|
753 | |
---|
754 | /// \brief Changes flow and state edge maps. |
---|
755 | void changeFlows(bool change) { |
---|
756 | // Augmenting along the cycle |
---|
757 | if (delta > 0) { |
---|
758 | Capacity val = state[in_edge] * delta; |
---|
759 | flow[in_edge] += val; |
---|
760 | for (Node u = graph.source(in_edge); u != join; u = parent[u]) { |
---|
761 | flow[pred_edge[u]] += forward[u] ? -val : val; |
---|
762 | } |
---|
763 | for (Node u = graph.target(in_edge); u != join; u = parent[u]) { |
---|
764 | flow[pred_edge[u]] += forward[u] ? val : -val; |
---|
765 | } |
---|
766 | } |
---|
767 | // Updating the state of the entering and leaving edges |
---|
768 | if (change) { |
---|
769 | state[in_edge] = TREE; |
---|
770 | state[pred_edge[u_out]] = |
---|
771 | (flow[pred_edge[u_out]] == 0) ? LOWER : UPPER; |
---|
772 | } else { |
---|
773 | state[in_edge] = -state[in_edge]; |
---|
774 | } |
---|
775 | } |
---|
776 | |
---|
777 | /// \brief Updates thread and parent node maps. |
---|
778 | void updateThreadParent() { |
---|
779 | Node u; |
---|
780 | v_out = parent[u_out]; |
---|
781 | |
---|
782 | // Handling the case when join and v_out coincide |
---|
783 | bool par_first = false; |
---|
784 | if (join == v_out) { |
---|
785 | for (u = join; u != u_in && u != v_in; u = thread[u]) ; |
---|
786 | if (u == v_in) { |
---|
787 | par_first = true; |
---|
788 | while (thread[u] != u_out) u = thread[u]; |
---|
789 | first = u; |
---|
790 | } |
---|
791 | } |
---|
792 | |
---|
793 | // Finding the last successor of u_in (u) and the node after it |
---|
794 | // (right) according to the thread index |
---|
795 | for (u = u_in; depth[thread[u]] > depth[u_in]; u = thread[u]) ; |
---|
796 | right = thread[u]; |
---|
797 | if (thread[v_in] == u_out) { |
---|
798 | for (last = u; depth[last] > depth[u_out]; last = thread[last]) ; |
---|
799 | if (last == u_out) last = thread[last]; |
---|
800 | } |
---|
801 | else last = thread[v_in]; |
---|
802 | |
---|
803 | // Updating stem nodes |
---|
804 | thread[v_in] = stem = u_in; |
---|
805 | par_stem = v_in; |
---|
806 | while (stem != u_out) { |
---|
807 | thread[u] = new_stem = parent[stem]; |
---|
808 | |
---|
809 | // Finding the node just before the stem node (u) according to |
---|
810 | // the original thread index |
---|
811 | for (u = new_stem; thread[u] != stem; u = thread[u]) ; |
---|
812 | thread[u] = right; |
---|
813 | |
---|
814 | // Changing the parent node of stem and shifting stem and |
---|
815 | // par_stem nodes |
---|
816 | parent[stem] = par_stem; |
---|
817 | par_stem = stem; |
---|
818 | stem = new_stem; |
---|
819 | |
---|
820 | // Finding the last successor of stem (u) and the node after it |
---|
821 | // (right) according to the thread index |
---|
822 | for (u = stem; depth[thread[u]] > depth[stem]; u = thread[u]) ; |
---|
823 | right = thread[u]; |
---|
824 | } |
---|
825 | parent[u_out] = par_stem; |
---|
826 | thread[u] = last; |
---|
827 | |
---|
828 | if (join == v_out && par_first) { |
---|
829 | if (first != v_in) thread[first] = right; |
---|
830 | } else { |
---|
831 | for (u = v_out; thread[u] != u_out; u = thread[u]) ; |
---|
832 | thread[u] = right; |
---|
833 | } |
---|
834 | } |
---|
835 | |
---|
836 | /// \brief Updates pred_edge and forward node maps. |
---|
837 | void updatePredEdge() { |
---|
838 | Node u = u_out, v; |
---|
839 | while (u != u_in) { |
---|
840 | v = parent[u]; |
---|
841 | pred_edge[u] = pred_edge[v]; |
---|
842 | forward[u] = !forward[v]; |
---|
843 | u = v; |
---|
844 | } |
---|
845 | pred_edge[u_in] = in_edge; |
---|
846 | forward[u_in] = (u_in == graph.source(in_edge)); |
---|
847 | } |
---|
848 | |
---|
849 | /// \brief Updates depth and potential node maps. |
---|
850 | void updateDepthPotential() { |
---|
851 | depth[u_in] = depth[v_in] + 1; |
---|
852 | potential[u_in] = forward[u_in] ? |
---|
853 | potential[v_in] + cost[pred_edge[u_in]] : |
---|
854 | potential[v_in] - cost[pred_edge[u_in]]; |
---|
855 | |
---|
856 | Node u = thread[u_in], v; |
---|
857 | while (true) { |
---|
858 | v = parent[u]; |
---|
859 | if (v == INVALID) break; |
---|
860 | depth[u] = depth[v] + 1; |
---|
861 | potential[u] = forward[u] ? |
---|
862 | potential[v] + cost[pred_edge[u]] : |
---|
863 | potential[v] - cost[pred_edge[u]]; |
---|
864 | if (depth[u] <= depth[v_in]) break; |
---|
865 | u = thread[u]; |
---|
866 | } |
---|
867 | } |
---|
868 | |
---|
869 | /// \brief Executes the algorithm. |
---|
870 | bool start() { |
---|
871 | // Processing pivots |
---|
872 | #ifdef _DEBUG_ITER_ |
---|
873 | int iter_num = 0; |
---|
874 | #endif |
---|
875 | #if defined(FIRST_ELIGIBLE_PIVOT) || defined(EDGE_BLOCK_PIVOT) |
---|
876 | EdgeIt next_edge(graph); |
---|
877 | while (findEnteringEdge(next_edge)) |
---|
878 | #else |
---|
879 | while (findEnteringEdge()) |
---|
880 | #endif |
---|
881 | { |
---|
882 | join = findJoinNode(); |
---|
883 | bool change = findLeavingEdge(); |
---|
884 | changeFlows(change); |
---|
885 | if (change) { |
---|
886 | updateThreadParent(); |
---|
887 | updatePredEdge(); |
---|
888 | updateDepthPotential(); |
---|
889 | } |
---|
890 | #ifdef _DEBUG_ITER_ |
---|
891 | ++iter_num; |
---|
892 | #endif |
---|
893 | } |
---|
894 | |
---|
895 | #ifdef _DEBUG_ITER_ |
---|
896 | std::cout << "Network Simplex algorithm finished. " << iter_num |
---|
897 | << " pivot iterations performed." << std::endl; |
---|
898 | #endif |
---|
899 | |
---|
900 | // Checking if the flow amount equals zero on all the |
---|
901 | // artificial edges |
---|
902 | for (InEdgeIt e(graph, root); e != INVALID; ++e) |
---|
903 | if (flow[e] > 0) return false; |
---|
904 | for (OutEdgeIt e(graph, root); e != INVALID; ++e) |
---|
905 | if (flow[e] > 0) return false; |
---|
906 | |
---|
907 | // Copying flow values to flow_result |
---|
908 | if (lower) { |
---|
909 | for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) |
---|
910 | flow_result[e] = (*lower)[e] + flow[edge_ref[e]]; |
---|
911 | } else { |
---|
912 | for (typename Graph::EdgeIt e(graph_ref); e != INVALID; ++e) |
---|
913 | flow_result[e] = flow[edge_ref[e]]; |
---|
914 | } |
---|
915 | // Copying potential values to potential_result |
---|
916 | for (typename Graph::NodeIt n(graph_ref); n != INVALID; ++n) |
---|
917 | potential_result[n] = potential[node_ref[n]]; |
---|
918 | |
---|
919 | return true; |
---|
920 | } |
---|
921 | |
---|
922 | }; //class NetworkSimplex |
---|
923 | |
---|
924 | ///@} |
---|
925 | |
---|
926 | } //namespace lemon |
---|
927 | |
---|
928 | #endif //LEMON_NETWORK_SIMPLEX_H |
---|