| 1 | /* -*- C++ -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2008 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_NETWORK_SIMPLEX_H |
|---|
| 20 | #define LEMON_NETWORK_SIMPLEX_H |
|---|
| 21 | |
|---|
| 22 | /// \ingroup min_cost_flow |
|---|
| 23 | /// |
|---|
| 24 | /// \file |
|---|
| 25 | /// \brief Network simplex algorithm for finding a minimum cost flow. |
|---|
| 26 | |
|---|
| 27 | #include <vector> |
|---|
| 28 | #include <limits> |
|---|
| 29 | |
|---|
| 30 | #include <lemon/graph_adaptor.h> |
|---|
| 31 | #include <lemon/graph_utils.h> |
|---|
| 32 | #include <lemon/smart_graph.h> |
|---|
| 33 | #include <lemon/math.h> |
|---|
| 34 | |
|---|
| 35 | namespace lemon { |
|---|
| 36 | |
|---|
| 37 | /// \addtogroup min_cost_flow |
|---|
| 38 | /// @{ |
|---|
| 39 | |
|---|
| 40 | /// \brief Implementation of the primal network simplex algorithm |
|---|
| 41 | /// for finding a minimum cost flow. |
|---|
| 42 | /// |
|---|
| 43 | /// \ref NetworkSimplex implements the primal network simplex algorithm |
|---|
| 44 | /// for finding a minimum cost flow. |
|---|
| 45 | /// |
|---|
| 46 | /// \tparam Graph The directed graph type the algorithm runs on. |
|---|
| 47 | /// \tparam LowerMap The type of the lower bound map. |
|---|
| 48 | /// \tparam CapacityMap The type of the capacity (upper bound) map. |
|---|
| 49 | /// \tparam CostMap The type of the cost (length) map. |
|---|
| 50 | /// \tparam SupplyMap The type of the supply map. |
|---|
| 51 | /// |
|---|
| 52 | /// \warning |
|---|
| 53 | /// - Edge capacities and costs should be \e non-negative \e integers. |
|---|
| 54 | /// - Supply values should be \e signed \e integers. |
|---|
| 55 | /// - The value types of the maps should be convertible to each other. |
|---|
| 56 | /// - \c CostMap::Value must be signed type. |
|---|
| 57 | /// |
|---|
| 58 | /// \note \ref NetworkSimplex provides five different pivot rule |
|---|
| 59 | /// implementations that significantly affect the efficiency of the |
|---|
| 60 | /// algorithm. |
|---|
| 61 | /// By default "Block Search" pivot rule is used, which proved to be |
|---|
| 62 | /// by far the most efficient according to our benchmark tests. |
|---|
| 63 | /// However another pivot rule can be selected using \ref run() |
|---|
| 64 | /// function with the proper parameter. |
|---|
| 65 | /// |
|---|
| 66 | /// \author Peter Kovacs |
|---|
| 67 | template < typename Graph, |
|---|
| 68 | typename LowerMap = typename Graph::template EdgeMap<int>, |
|---|
| 69 | typename CapacityMap = typename Graph::template EdgeMap<int>, |
|---|
| 70 | typename CostMap = typename Graph::template EdgeMap<int>, |
|---|
| 71 | typename SupplyMap = typename Graph::template NodeMap<int> > |
|---|
| 72 | class NetworkSimplex |
|---|
| 73 | { |
|---|
| 74 | typedef typename CapacityMap::Value Capacity; |
|---|
| 75 | typedef typename CostMap::Value Cost; |
|---|
| 76 | typedef typename SupplyMap::Value Supply; |
|---|
| 77 | |
|---|
| 78 | typedef SmartGraph SGraph; |
|---|
| 79 | GRAPH_TYPEDEFS(typename SGraph); |
|---|
| 80 | |
|---|
| 81 | typedef typename SGraph::template EdgeMap<Capacity> SCapacityMap; |
|---|
| 82 | typedef typename SGraph::template EdgeMap<Cost> SCostMap; |
|---|
| 83 | typedef typename SGraph::template NodeMap<Supply> SSupplyMap; |
|---|
| 84 | typedef typename SGraph::template NodeMap<Cost> SPotentialMap; |
|---|
| 85 | |
|---|
| 86 | typedef typename SGraph::template NodeMap<int> IntNodeMap; |
|---|
| 87 | typedef typename SGraph::template NodeMap<bool> BoolNodeMap; |
|---|
| 88 | typedef typename SGraph::template NodeMap<Node> NodeNodeMap; |
|---|
| 89 | typedef typename SGraph::template NodeMap<Edge> EdgeNodeMap; |
|---|
| 90 | typedef typename SGraph::template EdgeMap<int> IntEdgeMap; |
|---|
| 91 | typedef typename SGraph::template EdgeMap<bool> BoolEdgeMap; |
|---|
| 92 | |
|---|
| 93 | typedef typename Graph::template NodeMap<Node> NodeRefMap; |
|---|
| 94 | typedef typename Graph::template EdgeMap<Edge> EdgeRefMap; |
|---|
| 95 | |
|---|
| 96 | typedef std::vector<Edge> EdgeVector; |
|---|
| 97 | |
|---|
| 98 | public: |
|---|
| 99 | |
|---|
| 100 | /// The type of the flow map. |
|---|
| 101 | typedef typename Graph::template EdgeMap<Capacity> FlowMap; |
|---|
| 102 | /// The type of the potential map. |
|---|
| 103 | typedef typename Graph::template NodeMap<Cost> PotentialMap; |
|---|
| 104 | |
|---|
| 105 | public: |
|---|
| 106 | |
|---|
| 107 | /// Enum type to select the pivot rule used by \ref run(). |
|---|
| 108 | enum PivotRuleEnum { |
|---|
| 109 | FIRST_ELIGIBLE_PIVOT, |
|---|
| 110 | BEST_ELIGIBLE_PIVOT, |
|---|
| 111 | BLOCK_SEARCH_PIVOT, |
|---|
| 112 | CANDIDATE_LIST_PIVOT, |
|---|
| 113 | ALTERING_LIST_PIVOT |
|---|
| 114 | }; |
|---|
| 115 | |
|---|
| 116 | private: |
|---|
| 117 | |
|---|
| 118 | /// \brief Map adaptor class for handling reduced edge costs. |
|---|
| 119 | /// |
|---|
| 120 | /// Map adaptor class for handling reduced edge costs. |
|---|
| 121 | class ReducedCostMap : public MapBase<Edge, Cost> |
|---|
| 122 | { |
|---|
| 123 | private: |
|---|
| 124 | |
|---|
| 125 | const SGraph &_gr; |
|---|
| 126 | const SCostMap &_cost_map; |
|---|
| 127 | const SPotentialMap &_pot_map; |
|---|
| 128 | |
|---|
| 129 | public: |
|---|
| 130 | |
|---|
| 131 | ///\e |
|---|
| 132 | ReducedCostMap( const SGraph &gr, |
|---|
| 133 | const SCostMap &cost_map, |
|---|
| 134 | const SPotentialMap &pot_map ) : |
|---|
| 135 | _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} |
|---|
| 136 | |
|---|
| 137 | ///\e |
|---|
| 138 | Cost operator[](const Edge &e) const { |
|---|
| 139 | return _cost_map[e] + _pot_map[_gr.source(e)] |
|---|
| 140 | - _pot_map[_gr.target(e)]; |
|---|
| 141 | } |
|---|
| 142 | |
|---|
| 143 | }; //class ReducedCostMap |
|---|
| 144 | |
|---|
| 145 | private: |
|---|
| 146 | |
|---|
| 147 | /// \brief Implementation of the "First Eligible" pivot rule for the |
|---|
| 148 | /// \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 149 | /// |
|---|
| 150 | /// This class implements the "First Eligible" pivot rule |
|---|
| 151 | /// for the \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 152 | /// |
|---|
| 153 | /// For more information see \ref NetworkSimplex::run(). |
|---|
| 154 | class FirstEligiblePivotRule |
|---|
| 155 | { |
|---|
| 156 | private: |
|---|
| 157 | |
|---|
| 158 | // References to the NetworkSimplex class |
|---|
| 159 | NetworkSimplex &_ns; |
|---|
| 160 | EdgeVector &_edges; |
|---|
| 161 | |
|---|
| 162 | int _next_edge; |
|---|
| 163 | |
|---|
| 164 | public: |
|---|
| 165 | |
|---|
| 166 | /// Constructor |
|---|
| 167 | FirstEligiblePivotRule(NetworkSimplex &ns, EdgeVector &edges) : |
|---|
| 168 | _ns(ns), _edges(edges), _next_edge(0) {} |
|---|
| 169 | |
|---|
| 170 | /// Find next entering edge |
|---|
| 171 | inline bool findEnteringEdge() { |
|---|
| 172 | Edge e; |
|---|
| 173 | for (int i = _next_edge; i < int(_edges.size()); ++i) { |
|---|
| 174 | e = _edges[i]; |
|---|
| 175 | if (_ns._state[e] * _ns._red_cost[e] < 0) { |
|---|
| 176 | _ns._in_edge = e; |
|---|
| 177 | _next_edge = i + 1; |
|---|
| 178 | return true; |
|---|
| 179 | } |
|---|
| 180 | } |
|---|
| 181 | for (int i = 0; i < _next_edge; ++i) { |
|---|
| 182 | e = _edges[i]; |
|---|
| 183 | if (_ns._state[e] * _ns._red_cost[e] < 0) { |
|---|
| 184 | _ns._in_edge = e; |
|---|
| 185 | _next_edge = i + 1; |
|---|
| 186 | return true; |
|---|
| 187 | } |
|---|
| 188 | } |
|---|
| 189 | return false; |
|---|
| 190 | } |
|---|
| 191 | }; //class FirstEligiblePivotRule |
|---|
| 192 | |
|---|
| 193 | /// \brief Implementation of the "Best Eligible" pivot rule for the |
|---|
| 194 | /// \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 195 | /// |
|---|
| 196 | /// This class implements the "Best Eligible" pivot rule |
|---|
| 197 | /// for the \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 198 | /// |
|---|
| 199 | /// For more information see \ref NetworkSimplex::run(). |
|---|
| 200 | class BestEligiblePivotRule |
|---|
| 201 | { |
|---|
| 202 | private: |
|---|
| 203 | |
|---|
| 204 | // References to the NetworkSimplex class |
|---|
| 205 | NetworkSimplex &_ns; |
|---|
| 206 | EdgeVector &_edges; |
|---|
| 207 | |
|---|
| 208 | public: |
|---|
| 209 | |
|---|
| 210 | /// Constructor |
|---|
| 211 | BestEligiblePivotRule(NetworkSimplex &ns, EdgeVector &edges) : |
|---|
| 212 | _ns(ns), _edges(edges) {} |
|---|
| 213 | |
|---|
| 214 | /// Find next entering edge |
|---|
| 215 | inline bool findEnteringEdge() { |
|---|
| 216 | Cost min = 0; |
|---|
| 217 | Edge e; |
|---|
| 218 | for (int i = 0; i < int(_edges.size()); ++i) { |
|---|
| 219 | e = _edges[i]; |
|---|
| 220 | if (_ns._state[e] * _ns._red_cost[e] < min) { |
|---|
| 221 | min = _ns._state[e] * _ns._red_cost[e]; |
|---|
| 222 | _ns._in_edge = e; |
|---|
| 223 | } |
|---|
| 224 | } |
|---|
| 225 | return min < 0; |
|---|
| 226 | } |
|---|
| 227 | }; //class BestEligiblePivotRule |
|---|
| 228 | |
|---|
| 229 | /// \brief Implementation of the "Block Search" pivot rule for the |
|---|
| 230 | /// \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 231 | /// |
|---|
| 232 | /// This class implements the "Block Search" pivot rule |
|---|
| 233 | /// for the \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 234 | /// |
|---|
| 235 | /// For more information see \ref NetworkSimplex::run(). |
|---|
| 236 | class BlockSearchPivotRule |
|---|
| 237 | { |
|---|
| 238 | private: |
|---|
| 239 | |
|---|
| 240 | // References to the NetworkSimplex class |
|---|
| 241 | NetworkSimplex &_ns; |
|---|
| 242 | EdgeVector &_edges; |
|---|
| 243 | |
|---|
| 244 | int _block_size; |
|---|
| 245 | int _next_edge, _min_edge; |
|---|
| 246 | |
|---|
| 247 | public: |
|---|
| 248 | |
|---|
| 249 | /// Constructor |
|---|
| 250 | BlockSearchPivotRule(NetworkSimplex &ns, EdgeVector &edges) : |
|---|
| 251 | _ns(ns), _edges(edges), _next_edge(0), _min_edge(0) |
|---|
| 252 | { |
|---|
| 253 | // The main parameters of the pivot rule |
|---|
| 254 | const double BLOCK_SIZE_FACTOR = 2.0; |
|---|
| 255 | const int MIN_BLOCK_SIZE = 10; |
|---|
| 256 | |
|---|
| 257 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_edges.size())), |
|---|
| 258 | MIN_BLOCK_SIZE ); |
|---|
| 259 | } |
|---|
| 260 | |
|---|
| 261 | /// Find next entering edge |
|---|
| 262 | inline bool findEnteringEdge() { |
|---|
| 263 | Cost curr, min = 0; |
|---|
| 264 | Edge e; |
|---|
| 265 | int cnt = _block_size; |
|---|
| 266 | int i; |
|---|
| 267 | for (i = _next_edge; i < int(_edges.size()); ++i) { |
|---|
| 268 | e = _edges[i]; |
|---|
| 269 | if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) { |
|---|
| 270 | min = curr; |
|---|
| 271 | _min_edge = i; |
|---|
| 272 | } |
|---|
| 273 | if (--cnt == 0) { |
|---|
| 274 | if (min < 0) break; |
|---|
| 275 | cnt = _block_size; |
|---|
| 276 | } |
|---|
| 277 | } |
|---|
| 278 | if (min == 0 || cnt > 0) { |
|---|
| 279 | for (i = 0; i < _next_edge; ++i) { |
|---|
| 280 | e = _edges[i]; |
|---|
| 281 | if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) { |
|---|
| 282 | min = curr; |
|---|
| 283 | _min_edge = i; |
|---|
| 284 | } |
|---|
| 285 | if (--cnt == 0) { |
|---|
| 286 | if (min < 0) break; |
|---|
| 287 | cnt = _block_size; |
|---|
| 288 | } |
|---|
| 289 | } |
|---|
| 290 | } |
|---|
| 291 | if (min >= 0) return false; |
|---|
| 292 | _ns._in_edge = _edges[_min_edge]; |
|---|
| 293 | _next_edge = i; |
|---|
| 294 | return true; |
|---|
| 295 | } |
|---|
| 296 | }; //class BlockSearchPivotRule |
|---|
| 297 | |
|---|
| 298 | /// \brief Implementation of the "Candidate List" pivot rule for the |
|---|
| 299 | /// \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 300 | /// |
|---|
| 301 | /// This class implements the "Candidate List" pivot rule |
|---|
| 302 | /// for the \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 303 | /// |
|---|
| 304 | /// For more information see \ref NetworkSimplex::run(). |
|---|
| 305 | class CandidateListPivotRule |
|---|
| 306 | { |
|---|
| 307 | private: |
|---|
| 308 | |
|---|
| 309 | // References to the NetworkSimplex class |
|---|
| 310 | NetworkSimplex &_ns; |
|---|
| 311 | EdgeVector &_edges; |
|---|
| 312 | |
|---|
| 313 | EdgeVector _candidates; |
|---|
| 314 | int _list_length, _minor_limit; |
|---|
| 315 | int _curr_length, _minor_count; |
|---|
| 316 | int _next_edge, _min_edge; |
|---|
| 317 | |
|---|
| 318 | public: |
|---|
| 319 | |
|---|
| 320 | /// Constructor |
|---|
| 321 | CandidateListPivotRule(NetworkSimplex &ns, EdgeVector &edges) : |
|---|
| 322 | _ns(ns), _edges(edges), _next_edge(0), _min_edge(0) |
|---|
| 323 | { |
|---|
| 324 | // The main parameters of the pivot rule |
|---|
| 325 | const double LIST_LENGTH_FACTOR = 1.0; |
|---|
| 326 | const int MIN_LIST_LENGTH = 10; |
|---|
| 327 | const double MINOR_LIMIT_FACTOR = 0.1; |
|---|
| 328 | const int MIN_MINOR_LIMIT = 3; |
|---|
| 329 | |
|---|
| 330 | _list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_edges.size())), |
|---|
| 331 | MIN_LIST_LENGTH ); |
|---|
| 332 | _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
|---|
| 333 | MIN_MINOR_LIMIT ); |
|---|
| 334 | _curr_length = _minor_count = 0; |
|---|
| 335 | _candidates.resize(_list_length); |
|---|
| 336 | } |
|---|
| 337 | |
|---|
| 338 | /// Find next entering edge |
|---|
| 339 | inline bool findEnteringEdge() { |
|---|
| 340 | Cost min, curr; |
|---|
| 341 | if (_curr_length > 0 && _minor_count < _minor_limit) { |
|---|
| 342 | // Minor iteration: selecting the best eligible edge from |
|---|
| 343 | // the current candidate list |
|---|
| 344 | ++_minor_count; |
|---|
| 345 | Edge e; |
|---|
| 346 | min = 0; |
|---|
| 347 | for (int i = 0; i < _curr_length; ++i) { |
|---|
| 348 | e = _candidates[i]; |
|---|
| 349 | curr = _ns._state[e] * _ns._red_cost[e]; |
|---|
| 350 | if (curr < min) { |
|---|
| 351 | min = curr; |
|---|
| 352 | _ns._in_edge = e; |
|---|
| 353 | } |
|---|
| 354 | if (curr >= 0) { |
|---|
| 355 | _candidates[i--] = _candidates[--_curr_length]; |
|---|
| 356 | } |
|---|
| 357 | } |
|---|
| 358 | if (min < 0) return true; |
|---|
| 359 | } |
|---|
| 360 | |
|---|
| 361 | // Major iteration: building a new candidate list |
|---|
| 362 | Edge e; |
|---|
| 363 | min = 0; |
|---|
| 364 | _curr_length = 0; |
|---|
| 365 | int i; |
|---|
| 366 | for (i = _next_edge; i < int(_edges.size()); ++i) { |
|---|
| 367 | e = _edges[i]; |
|---|
| 368 | if ((curr = _ns._state[e] * _ns._red_cost[e]) < 0) { |
|---|
| 369 | _candidates[_curr_length++] = e; |
|---|
| 370 | if (curr < min) { |
|---|
| 371 | min = curr; |
|---|
| 372 | _min_edge = i; |
|---|
| 373 | } |
|---|
| 374 | if (_curr_length == _list_length) break; |
|---|
| 375 | } |
|---|
| 376 | } |
|---|
| 377 | if (_curr_length < _list_length) { |
|---|
| 378 | for (i = 0; i < _next_edge; ++i) { |
|---|
| 379 | e = _edges[i]; |
|---|
| 380 | if ((curr = _ns._state[e] * _ns._red_cost[e]) < 0) { |
|---|
| 381 | _candidates[_curr_length++] = e; |
|---|
| 382 | if (curr < min) { |
|---|
| 383 | min = curr; |
|---|
| 384 | _min_edge = i; |
|---|
| 385 | } |
|---|
| 386 | if (_curr_length == _list_length) break; |
|---|
| 387 | } |
|---|
| 388 | } |
|---|
| 389 | } |
|---|
| 390 | if (_curr_length == 0) return false; |
|---|
| 391 | _minor_count = 1; |
|---|
| 392 | _ns._in_edge = _edges[_min_edge]; |
|---|
| 393 | _next_edge = i; |
|---|
| 394 | return true; |
|---|
| 395 | } |
|---|
| 396 | }; //class CandidateListPivotRule |
|---|
| 397 | |
|---|
| 398 | /// \brief Implementation of the "Altering Candidate List" pivot rule |
|---|
| 399 | /// for the \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 400 | /// |
|---|
| 401 | /// This class implements the "Altering Candidate List" pivot rule |
|---|
| 402 | /// for the \ref NetworkSimplex "network simplex" algorithm. |
|---|
| 403 | /// |
|---|
| 404 | /// For more information see \ref NetworkSimplex::run(). |
|---|
| 405 | class AlteringListPivotRule |
|---|
| 406 | { |
|---|
| 407 | private: |
|---|
| 408 | |
|---|
| 409 | // References to the NetworkSimplex class |
|---|
| 410 | NetworkSimplex &_ns; |
|---|
| 411 | EdgeVector &_edges; |
|---|
| 412 | |
|---|
| 413 | EdgeVector _candidates; |
|---|
| 414 | SCostMap _cand_cost; |
|---|
| 415 | int _block_size, _head_length, _curr_length; |
|---|
| 416 | int _next_edge; |
|---|
| 417 | |
|---|
| 418 | // Functor class to compare edges during sort of the candidate list |
|---|
| 419 | class SortFunc |
|---|
| 420 | { |
|---|
| 421 | private: |
|---|
| 422 | const SCostMap &_map; |
|---|
| 423 | public: |
|---|
| 424 | SortFunc(const SCostMap &map) : _map(map) {} |
|---|
| 425 | bool operator()(const Edge &e1, const Edge &e2) { |
|---|
| 426 | return _map[e1] < _map[e2]; |
|---|
| 427 | } |
|---|
| 428 | }; |
|---|
| 429 | |
|---|
| 430 | SortFunc _sort_func; |
|---|
| 431 | |
|---|
| 432 | public: |
|---|
| 433 | |
|---|
| 434 | /// Constructor |
|---|
| 435 | AlteringListPivotRule(NetworkSimplex &ns, EdgeVector &edges) : |
|---|
| 436 | _ns(ns), _edges(edges), _cand_cost(_ns._graph), |
|---|
| 437 | _next_edge(0), _sort_func(_cand_cost) |
|---|
| 438 | { |
|---|
| 439 | // The main parameters of the pivot rule |
|---|
| 440 | const double BLOCK_SIZE_FACTOR = 1.0; |
|---|
| 441 | const int MIN_BLOCK_SIZE = 10; |
|---|
| 442 | const double HEAD_LENGTH_FACTOR = 0.1; |
|---|
| 443 | const int MIN_HEAD_LENGTH = 5; |
|---|
| 444 | |
|---|
| 445 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_edges.size())), |
|---|
| 446 | MIN_BLOCK_SIZE ); |
|---|
| 447 | _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
|---|
| 448 | MIN_HEAD_LENGTH ); |
|---|
| 449 | _candidates.resize(_head_length + _block_size); |
|---|
| 450 | _curr_length = 0; |
|---|
| 451 | } |
|---|
| 452 | |
|---|
| 453 | /// Find next entering edge |
|---|
| 454 | inline bool findEnteringEdge() { |
|---|
| 455 | // Checking the current candidate list |
|---|
| 456 | Edge e; |
|---|
| 457 | for (int idx = 0; idx < _curr_length; ++idx) { |
|---|
| 458 | e = _candidates[idx]; |
|---|
| 459 | if ((_cand_cost[e] = _ns._state[e] * _ns._red_cost[e]) >= 0) { |
|---|
| 460 | _candidates[idx--] = _candidates[--_curr_length]; |
|---|
| 461 | } |
|---|
| 462 | } |
|---|
| 463 | |
|---|
| 464 | // Extending the list |
|---|
| 465 | int cnt = _block_size; |
|---|
| 466 | int last_edge = 0; |
|---|
| 467 | int limit = _head_length; |
|---|
| 468 | for (int i = _next_edge; i < int(_edges.size()); ++i) { |
|---|
| 469 | e = _edges[i]; |
|---|
| 470 | if ((_cand_cost[e] = _ns._state[e] * _ns._red_cost[e]) < 0) { |
|---|
| 471 | _candidates[_curr_length++] = e; |
|---|
| 472 | last_edge = i; |
|---|
| 473 | } |
|---|
| 474 | if (--cnt == 0) { |
|---|
| 475 | if (_curr_length > limit) break; |
|---|
| 476 | limit = 0; |
|---|
| 477 | cnt = _block_size; |
|---|
| 478 | } |
|---|
| 479 | } |
|---|
| 480 | if (_curr_length <= limit) { |
|---|
| 481 | for (int i = 0; i < _next_edge; ++i) { |
|---|
| 482 | e = _edges[i]; |
|---|
| 483 | if ((_cand_cost[e] = _ns._state[e] * _ns._red_cost[e]) < 0) { |
|---|
| 484 | _candidates[_curr_length++] = e; |
|---|
| 485 | last_edge = i; |
|---|
| 486 | } |
|---|
| 487 | if (--cnt == 0) { |
|---|
| 488 | if (_curr_length > limit) break; |
|---|
| 489 | limit = 0; |
|---|
| 490 | cnt = _block_size; |
|---|
| 491 | } |
|---|
| 492 | } |
|---|
| 493 | } |
|---|
| 494 | if (_curr_length == 0) return false; |
|---|
| 495 | _next_edge = last_edge + 1; |
|---|
| 496 | |
|---|
| 497 | // Sorting the list partially |
|---|
| 498 | EdgeVector::iterator sort_end = _candidates.begin(); |
|---|
| 499 | EdgeVector::iterator vector_end = _candidates.begin(); |
|---|
| 500 | for (int idx = 0; idx < _curr_length; ++idx) { |
|---|
| 501 | ++vector_end; |
|---|
| 502 | if (idx <= _head_length) ++sort_end; |
|---|
| 503 | } |
|---|
| 504 | partial_sort(_candidates.begin(), sort_end, vector_end, _sort_func); |
|---|
| 505 | |
|---|
| 506 | _ns._in_edge = _candidates[0]; |
|---|
| 507 | if (_curr_length > _head_length) { |
|---|
| 508 | _candidates[0] = _candidates[_head_length - 1]; |
|---|
| 509 | _curr_length = _head_length - 1; |
|---|
| 510 | } else { |
|---|
| 511 | _candidates[0] = _candidates[_curr_length - 1]; |
|---|
| 512 | --_curr_length; |
|---|
| 513 | } |
|---|
| 514 | |
|---|
| 515 | return true; |
|---|
| 516 | } |
|---|
| 517 | }; //class AlteringListPivotRule |
|---|
| 518 | |
|---|
| 519 | private: |
|---|
| 520 | |
|---|
| 521 | // State constants for edges |
|---|
| 522 | enum EdgeStateEnum { |
|---|
| 523 | STATE_UPPER = -1, |
|---|
| 524 | STATE_TREE = 0, |
|---|
| 525 | STATE_LOWER = 1 |
|---|
| 526 | }; |
|---|
| 527 | |
|---|
| 528 | private: |
|---|
| 529 | |
|---|
| 530 | // The directed graph the algorithm runs on |
|---|
| 531 | SGraph _graph; |
|---|
| 532 | // The original graph |
|---|
| 533 | const Graph &_graph_ref; |
|---|
| 534 | // The original lower bound map |
|---|
| 535 | const LowerMap *_lower; |
|---|
| 536 | // The capacity map |
|---|
| 537 | SCapacityMap _capacity; |
|---|
| 538 | // The cost map |
|---|
| 539 | SCostMap _cost; |
|---|
| 540 | // The supply map |
|---|
| 541 | SSupplyMap _supply; |
|---|
| 542 | bool _valid_supply; |
|---|
| 543 | |
|---|
| 544 | // Edge map of the current flow |
|---|
| 545 | SCapacityMap _flow; |
|---|
| 546 | // Node map of the current potentials |
|---|
| 547 | SPotentialMap _potential; |
|---|
| 548 | |
|---|
| 549 | // The depth node map of the spanning tree structure |
|---|
| 550 | IntNodeMap _depth; |
|---|
| 551 | // The parent node map of the spanning tree structure |
|---|
| 552 | NodeNodeMap _parent; |
|---|
| 553 | // The pred_edge node map of the spanning tree structure |
|---|
| 554 | EdgeNodeMap _pred_edge; |
|---|
| 555 | // The thread node map of the spanning tree structure |
|---|
| 556 | NodeNodeMap _thread; |
|---|
| 557 | // The forward node map of the spanning tree structure |
|---|
| 558 | BoolNodeMap _forward; |
|---|
| 559 | // The state edge map |
|---|
| 560 | IntEdgeMap _state; |
|---|
| 561 | // The root node of the starting spanning tree |
|---|
| 562 | Node _root; |
|---|
| 563 | |
|---|
| 564 | // The reduced cost map |
|---|
| 565 | ReducedCostMap _red_cost; |
|---|
| 566 | |
|---|
| 567 | // The non-artifical edges |
|---|
| 568 | EdgeVector _edges; |
|---|
| 569 | |
|---|
| 570 | // Members for handling the original graph |
|---|
| 571 | FlowMap *_flow_result; |
|---|
| 572 | PotentialMap *_potential_result; |
|---|
| 573 | bool _local_flow; |
|---|
| 574 | bool _local_potential; |
|---|
| 575 | NodeRefMap _node_ref; |
|---|
| 576 | EdgeRefMap _edge_ref; |
|---|
| 577 | |
|---|
| 578 | // The entering edge of the current pivot iteration. |
|---|
| 579 | Edge _in_edge; |
|---|
| 580 | |
|---|
| 581 | // Temporary nodes used in the current pivot iteration. |
|---|
| 582 | Node join, u_in, v_in, u_out, v_out; |
|---|
| 583 | Node right, first, second, last; |
|---|
| 584 | Node stem, par_stem, new_stem; |
|---|
| 585 | // The maximum augment amount along the found cycle in the current |
|---|
| 586 | // pivot iteration. |
|---|
| 587 | Capacity delta; |
|---|
| 588 | |
|---|
| 589 | public : |
|---|
| 590 | |
|---|
| 591 | /// \brief General constructor (with lower bounds). |
|---|
| 592 | /// |
|---|
| 593 | /// General constructor (with lower bounds). |
|---|
| 594 | /// |
|---|
| 595 | /// \param graph The directed graph the algorithm runs on. |
|---|
| 596 | /// \param lower The lower bounds of the edges. |
|---|
| 597 | /// \param capacity The capacities (upper bounds) of the edges. |
|---|
| 598 | /// \param cost The cost (length) values of the edges. |
|---|
| 599 | /// \param supply The supply values of the nodes (signed). |
|---|
| 600 | NetworkSimplex( const Graph &graph, |
|---|
| 601 | const LowerMap &lower, |
|---|
| 602 | const CapacityMap &capacity, |
|---|
| 603 | const CostMap &cost, |
|---|
| 604 | const SupplyMap &supply ) : |
|---|
| 605 | _graph(), _graph_ref(graph), _lower(&lower), _capacity(_graph), |
|---|
| 606 | _cost(_graph), _supply(_graph), _flow(_graph), |
|---|
| 607 | _potential(_graph), _depth(_graph), _parent(_graph), |
|---|
| 608 | _pred_edge(_graph), _thread(_graph), _forward(_graph), |
|---|
| 609 | _state(_graph), _red_cost(_graph, _cost, _potential), |
|---|
| 610 | _flow_result(NULL), _potential_result(NULL), |
|---|
| 611 | _local_flow(false), _local_potential(false), |
|---|
| 612 | _node_ref(graph), _edge_ref(graph) |
|---|
| 613 | { |
|---|
| 614 | // Check the sum of supply values |
|---|
| 615 | Supply sum = 0; |
|---|
| 616 | for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n) |
|---|
| 617 | sum += supply[n]; |
|---|
| 618 | if (!(_valid_supply = sum == 0)) return; |
|---|
| 619 | |
|---|
| 620 | // Copy _graph_ref to _graph |
|---|
| 621 | _graph.reserveNode(countNodes(_graph_ref) + 1); |
|---|
| 622 | _graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref)); |
|---|
| 623 | copyGraph(_graph, _graph_ref) |
|---|
| 624 | .edgeMap(_capacity, capacity) |
|---|
| 625 | .edgeMap(_cost, cost) |
|---|
| 626 | .nodeMap(_supply, supply) |
|---|
| 627 | .nodeRef(_node_ref) |
|---|
| 628 | .edgeRef(_edge_ref) |
|---|
| 629 | .run(); |
|---|
| 630 | |
|---|
| 631 | // Remove non-zero lower bounds |
|---|
| 632 | for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) { |
|---|
| 633 | if (lower[e] != 0) { |
|---|
| 634 | _capacity[_edge_ref[e]] = capacity[e] - lower[e]; |
|---|
| 635 | _supply[_node_ref[_graph_ref.source(e)]] -= lower[e]; |
|---|
| 636 | _supply[_node_ref[_graph_ref.target(e)]] += lower[e]; |
|---|
| 637 | } |
|---|
| 638 | } |
|---|
| 639 | } |
|---|
| 640 | |
|---|
| 641 | /// \brief General constructor (without lower bounds). |
|---|
| 642 | /// |
|---|
| 643 | /// General constructor (without lower bounds). |
|---|
| 644 | /// |
|---|
| 645 | /// \param graph The directed graph the algorithm runs on. |
|---|
| 646 | /// \param capacity The capacities (upper bounds) of the edges. |
|---|
| 647 | /// \param cost The cost (length) values of the edges. |
|---|
| 648 | /// \param supply The supply values of the nodes (signed). |
|---|
| 649 | NetworkSimplex( const Graph &graph, |
|---|
| 650 | const CapacityMap &capacity, |
|---|
| 651 | const CostMap &cost, |
|---|
| 652 | const SupplyMap &supply ) : |
|---|
| 653 | _graph(), _graph_ref(graph), _lower(NULL), _capacity(_graph), |
|---|
| 654 | _cost(_graph), _supply(_graph), _flow(_graph), |
|---|
| 655 | _potential(_graph), _depth(_graph), _parent(_graph), |
|---|
| 656 | _pred_edge(_graph), _thread(_graph), _forward(_graph), |
|---|
| 657 | _state(_graph), _red_cost(_graph, _cost, _potential), |
|---|
| 658 | _flow_result(NULL), _potential_result(NULL), |
|---|
| 659 | _local_flow(false), _local_potential(false), |
|---|
| 660 | _node_ref(graph), _edge_ref(graph) |
|---|
| 661 | { |
|---|
| 662 | // Check the sum of supply values |
|---|
| 663 | Supply sum = 0; |
|---|
| 664 | for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n) |
|---|
| 665 | sum += supply[n]; |
|---|
| 666 | if (!(_valid_supply = sum == 0)) return; |
|---|
| 667 | |
|---|
| 668 | // Copy _graph_ref to _graph |
|---|
| 669 | _graph.reserveNode(countNodes(_graph_ref) + 1); |
|---|
| 670 | _graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref)); |
|---|
| 671 | copyGraph(_graph, _graph_ref) |
|---|
| 672 | .edgeMap(_capacity, capacity) |
|---|
| 673 | .edgeMap(_cost, cost) |
|---|
| 674 | .nodeMap(_supply, supply) |
|---|
| 675 | .nodeRef(_node_ref) |
|---|
| 676 | .edgeRef(_edge_ref) |
|---|
| 677 | .run(); |
|---|
| 678 | } |
|---|
| 679 | |
|---|
| 680 | /// \brief Simple constructor (with lower bounds). |
|---|
| 681 | /// |
|---|
| 682 | /// Simple constructor (with lower bounds). |
|---|
| 683 | /// |
|---|
| 684 | /// \param graph The directed graph the algorithm runs on. |
|---|
| 685 | /// \param lower The lower bounds of the edges. |
|---|
| 686 | /// \param capacity The capacities (upper bounds) of the edges. |
|---|
| 687 | /// \param cost The cost (length) values of the edges. |
|---|
| 688 | /// \param s The source node. |
|---|
| 689 | /// \param t The target node. |
|---|
| 690 | /// \param flow_value The required amount of flow from node \c s |
|---|
| 691 | /// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|---|
| 692 | NetworkSimplex( const Graph &graph, |
|---|
| 693 | const LowerMap &lower, |
|---|
| 694 | const CapacityMap &capacity, |
|---|
| 695 | const CostMap &cost, |
|---|
| 696 | typename Graph::Node s, |
|---|
| 697 | typename Graph::Node t, |
|---|
| 698 | typename SupplyMap::Value flow_value ) : |
|---|
| 699 | _graph(), _graph_ref(graph), _lower(&lower), _capacity(_graph), |
|---|
| 700 | _cost(_graph), _supply(_graph, 0), _flow(_graph), |
|---|
| 701 | _potential(_graph), _depth(_graph), _parent(_graph), |
|---|
| 702 | _pred_edge(_graph), _thread(_graph), _forward(_graph), |
|---|
| 703 | _state(_graph), _red_cost(_graph, _cost, _potential), |
|---|
| 704 | _flow_result(NULL), _potential_result(NULL), |
|---|
| 705 | _local_flow(false), _local_potential(false), |
|---|
| 706 | _node_ref(graph), _edge_ref(graph) |
|---|
| 707 | { |
|---|
| 708 | // Copy _graph_ref to graph |
|---|
| 709 | _graph.reserveNode(countNodes(_graph_ref) + 1); |
|---|
| 710 | _graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref)); |
|---|
| 711 | copyGraph(_graph, _graph_ref) |
|---|
| 712 | .edgeMap(_capacity, capacity) |
|---|
| 713 | .edgeMap(_cost, cost) |
|---|
| 714 | .nodeRef(_node_ref) |
|---|
| 715 | .edgeRef(_edge_ref) |
|---|
| 716 | .run(); |
|---|
| 717 | |
|---|
| 718 | // Remove non-zero lower bounds |
|---|
| 719 | _supply[_node_ref[s]] = flow_value; |
|---|
| 720 | _supply[_node_ref[t]] = -flow_value; |
|---|
| 721 | for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) { |
|---|
| 722 | if (lower[e] != 0) { |
|---|
| 723 | _capacity[_edge_ref[e]] = capacity[e] - lower[e]; |
|---|
| 724 | _supply[_node_ref[_graph_ref.source(e)]] -= lower[e]; |
|---|
| 725 | _supply[_node_ref[_graph_ref.target(e)]] += lower[e]; |
|---|
| 726 | } |
|---|
| 727 | } |
|---|
| 728 | _valid_supply = true; |
|---|
| 729 | } |
|---|
| 730 | |
|---|
| 731 | /// \brief Simple constructor (without lower bounds). |
|---|
| 732 | /// |
|---|
| 733 | /// Simple constructor (without lower bounds). |
|---|
| 734 | /// |
|---|
| 735 | /// \param graph The directed graph the algorithm runs on. |
|---|
| 736 | /// \param capacity The capacities (upper bounds) of the edges. |
|---|
| 737 | /// \param cost The cost (length) values of the edges. |
|---|
| 738 | /// \param s The source node. |
|---|
| 739 | /// \param t The target node. |
|---|
| 740 | /// \param flow_value The required amount of flow from node \c s |
|---|
| 741 | /// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|---|
| 742 | NetworkSimplex( const Graph &graph, |
|---|
| 743 | const CapacityMap &capacity, |
|---|
| 744 | const CostMap &cost, |
|---|
| 745 | typename Graph::Node s, |
|---|
| 746 | typename Graph::Node t, |
|---|
| 747 | typename SupplyMap::Value flow_value ) : |
|---|
| 748 | _graph(), _graph_ref(graph), _lower(NULL), _capacity(_graph), |
|---|
| 749 | _cost(_graph), _supply(_graph, 0), _flow(_graph), |
|---|
| 750 | _potential(_graph), _depth(_graph), _parent(_graph), |
|---|
| 751 | _pred_edge(_graph), _thread(_graph), _forward(_graph), |
|---|
| 752 | _state(_graph), _red_cost(_graph, _cost, _potential), |
|---|
| 753 | _flow_result(NULL), _potential_result(NULL), |
|---|
| 754 | _local_flow(false), _local_potential(false), |
|---|
| 755 | _node_ref(graph), _edge_ref(graph) |
|---|
| 756 | { |
|---|
| 757 | // Copy _graph_ref to graph |
|---|
| 758 | _graph.reserveNode(countNodes(_graph_ref) + 1); |
|---|
| 759 | _graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref)); |
|---|
| 760 | copyGraph(_graph, _graph_ref) |
|---|
| 761 | .edgeMap(_capacity, capacity) |
|---|
| 762 | .edgeMap(_cost, cost) |
|---|
| 763 | .nodeRef(_node_ref) |
|---|
| 764 | .edgeRef(_edge_ref) |
|---|
| 765 | .run(); |
|---|
| 766 | _supply[_node_ref[s]] = flow_value; |
|---|
| 767 | _supply[_node_ref[t]] = -flow_value; |
|---|
| 768 | _valid_supply = true; |
|---|
| 769 | } |
|---|
| 770 | |
|---|
| 771 | /// Destructor. |
|---|
| 772 | ~NetworkSimplex() { |
|---|
| 773 | if (_local_flow) delete _flow_result; |
|---|
| 774 | if (_local_potential) delete _potential_result; |
|---|
| 775 | } |
|---|
| 776 | |
|---|
| 777 | /// \brief Set the flow map. |
|---|
| 778 | /// |
|---|
| 779 | /// Set the flow map. |
|---|
| 780 | /// |
|---|
| 781 | /// \return \c (*this) |
|---|
| 782 | NetworkSimplex& flowMap(FlowMap &map) { |
|---|
| 783 | if (_local_flow) { |
|---|
| 784 | delete _flow_result; |
|---|
| 785 | _local_flow = false; |
|---|
| 786 | } |
|---|
| 787 | _flow_result = ↦ |
|---|
| 788 | return *this; |
|---|
| 789 | } |
|---|
| 790 | |
|---|
| 791 | /// \brief Set the potential map. |
|---|
| 792 | /// |
|---|
| 793 | /// Set the potential map. |
|---|
| 794 | /// |
|---|
| 795 | /// \return \c (*this) |
|---|
| 796 | NetworkSimplex& potentialMap(PotentialMap &map) { |
|---|
| 797 | if (_local_potential) { |
|---|
| 798 | delete _potential_result; |
|---|
| 799 | _local_potential = false; |
|---|
| 800 | } |
|---|
| 801 | _potential_result = ↦ |
|---|
| 802 | return *this; |
|---|
| 803 | } |
|---|
| 804 | |
|---|
| 805 | /// \name Execution control |
|---|
| 806 | |
|---|
| 807 | /// @{ |
|---|
| 808 | |
|---|
| 809 | /// \brief Runs the algorithm. |
|---|
| 810 | /// |
|---|
| 811 | /// Runs the algorithm. |
|---|
| 812 | /// |
|---|
| 813 | /// \param pivot_rule The pivot rule that is used during the |
|---|
| 814 | /// algorithm. |
|---|
| 815 | /// |
|---|
| 816 | /// The available pivot rules: |
|---|
| 817 | /// |
|---|
| 818 | /// - FIRST_ELIGIBLE_PIVOT The next eligible edge is selected in |
|---|
| 819 | /// a wraparound fashion in every iteration |
|---|
| 820 | /// (\ref FirstEligiblePivotRule). |
|---|
| 821 | /// |
|---|
| 822 | /// - BEST_ELIGIBLE_PIVOT The best eligible edge is selected in |
|---|
| 823 | /// every iteration (\ref BestEligiblePivotRule). |
|---|
| 824 | /// |
|---|
| 825 | /// - BLOCK_SEARCH_PIVOT A specified number of edges are examined in |
|---|
| 826 | /// every iteration in a wraparound fashion and the best eligible |
|---|
| 827 | /// edge is selected from this block (\ref BlockSearchPivotRule). |
|---|
| 828 | /// |
|---|
| 829 | /// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is |
|---|
| 830 | /// built from eligible edges in a wraparound fashion and in the |
|---|
| 831 | /// following minor iterations the best eligible edge is selected |
|---|
| 832 | /// from this list (\ref CandidateListPivotRule). |
|---|
| 833 | /// |
|---|
| 834 | /// - ALTERING_LIST_PIVOT It is a modified version of the |
|---|
| 835 | /// "Candidate List" pivot rule. It keeps only the several best |
|---|
| 836 | /// eligible edges from the former candidate list and extends this |
|---|
| 837 | /// list in every iteration (\ref AlteringListPivotRule). |
|---|
| 838 | /// |
|---|
| 839 | /// According to our comprehensive benchmark tests the "Block Search" |
|---|
| 840 | /// pivot rule proved to be by far the fastest and the most robust |
|---|
| 841 | /// on various test inputs. Thus it is the default option. |
|---|
| 842 | /// |
|---|
| 843 | /// \return \c true if a feasible flow can be found. |
|---|
| 844 | bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) { |
|---|
| 845 | return init() && start(pivot_rule); |
|---|
| 846 | } |
|---|
| 847 | |
|---|
| 848 | /// @} |
|---|
| 849 | |
|---|
| 850 | /// \name Query Functions |
|---|
| 851 | /// The results of the algorithm can be obtained using these |
|---|
| 852 | /// functions.\n |
|---|
| 853 | /// \ref lemon::NetworkSimplex::run() "run()" must be called before |
|---|
| 854 | /// using them. |
|---|
| 855 | |
|---|
| 856 | /// @{ |
|---|
| 857 | |
|---|
| 858 | /// \brief Return a const reference to the edge map storing the |
|---|
| 859 | /// found flow. |
|---|
| 860 | /// |
|---|
| 861 | /// Return a const reference to the edge map storing the found flow. |
|---|
| 862 | /// |
|---|
| 863 | /// \pre \ref run() must be called before using this function. |
|---|
| 864 | const FlowMap& flowMap() const { |
|---|
| 865 | return *_flow_result; |
|---|
| 866 | } |
|---|
| 867 | |
|---|
| 868 | /// \brief Return a const reference to the node map storing the |
|---|
| 869 | /// found potentials (the dual solution). |
|---|
| 870 | /// |
|---|
| 871 | /// Return a const reference to the node map storing the found |
|---|
| 872 | /// potentials (the dual solution). |
|---|
| 873 | /// |
|---|
| 874 | /// \pre \ref run() must be called before using this function. |
|---|
| 875 | const PotentialMap& potentialMap() const { |
|---|
| 876 | return *_potential_result; |
|---|
| 877 | } |
|---|
| 878 | |
|---|
| 879 | /// \brief Return the flow on the given edge. |
|---|
| 880 | /// |
|---|
| 881 | /// Return the flow on the given edge. |
|---|
| 882 | /// |
|---|
| 883 | /// \pre \ref run() must be called before using this function. |
|---|
| 884 | Capacity flow(const typename Graph::Edge& edge) const { |
|---|
| 885 | return (*_flow_result)[edge]; |
|---|
| 886 | } |
|---|
| 887 | |
|---|
| 888 | /// \brief Return the potential of the given node. |
|---|
| 889 | /// |
|---|
| 890 | /// Return the potential of the given node. |
|---|
| 891 | /// |
|---|
| 892 | /// \pre \ref run() must be called before using this function. |
|---|
| 893 | Cost potential(const typename Graph::Node& node) const { |
|---|
| 894 | return (*_potential_result)[node]; |
|---|
| 895 | } |
|---|
| 896 | |
|---|
| 897 | /// \brief Return the total cost of the found flow. |
|---|
| 898 | /// |
|---|
| 899 | /// Return the total cost of the found flow. The complexity of the |
|---|
| 900 | /// function is \f$ O(e) \f$. |
|---|
| 901 | /// |
|---|
| 902 | /// \pre \ref run() must be called before using this function. |
|---|
| 903 | Cost totalCost() const { |
|---|
| 904 | Cost c = 0; |
|---|
| 905 | for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) |
|---|
| 906 | c += (*_flow_result)[e] * _cost[_edge_ref[e]]; |
|---|
| 907 | return c; |
|---|
| 908 | } |
|---|
| 909 | |
|---|
| 910 | /// @} |
|---|
| 911 | |
|---|
| 912 | private: |
|---|
| 913 | |
|---|
| 914 | /// \brief Extend the underlying graph and initialize all the |
|---|
| 915 | /// node and edge maps. |
|---|
| 916 | bool init() { |
|---|
| 917 | if (!_valid_supply) return false; |
|---|
| 918 | |
|---|
| 919 | // Initializing result maps |
|---|
| 920 | if (!_flow_result) { |
|---|
| 921 | _flow_result = new FlowMap(_graph_ref); |
|---|
| 922 | _local_flow = true; |
|---|
| 923 | } |
|---|
| 924 | if (!_potential_result) { |
|---|
| 925 | _potential_result = new PotentialMap(_graph_ref); |
|---|
| 926 | _local_potential = true; |
|---|
| 927 | } |
|---|
| 928 | |
|---|
| 929 | // Initializing the edge vector and the edge maps |
|---|
| 930 | _edges.reserve(countEdges(_graph)); |
|---|
| 931 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
|---|
| 932 | _edges.push_back(e); |
|---|
| 933 | _flow[e] = 0; |
|---|
| 934 | _state[e] = STATE_LOWER; |
|---|
| 935 | } |
|---|
| 936 | |
|---|
| 937 | // Adding an artificial root node to the graph |
|---|
| 938 | _root = _graph.addNode(); |
|---|
| 939 | _parent[_root] = INVALID; |
|---|
| 940 | _pred_edge[_root] = INVALID; |
|---|
| 941 | _depth[_root] = 0; |
|---|
| 942 | _supply[_root] = 0; |
|---|
| 943 | _potential[_root] = 0; |
|---|
| 944 | |
|---|
| 945 | // Adding artificial edges to the graph and initializing the node |
|---|
| 946 | // maps of the spanning tree data structure |
|---|
| 947 | Node last = _root; |
|---|
| 948 | Edge e; |
|---|
| 949 | Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|---|
| 950 | for (NodeIt u(_graph); u != INVALID; ++u) { |
|---|
| 951 | if (u == _root) continue; |
|---|
| 952 | _thread[last] = u; |
|---|
| 953 | last = u; |
|---|
| 954 | _parent[u] = _root; |
|---|
| 955 | _depth[u] = 1; |
|---|
| 956 | if (_supply[u] >= 0) { |
|---|
| 957 | e = _graph.addEdge(u, _root); |
|---|
| 958 | _flow[e] = _supply[u]; |
|---|
| 959 | _forward[u] = true; |
|---|
| 960 | _potential[u] = -max_cost; |
|---|
| 961 | } else { |
|---|
| 962 | e = _graph.addEdge(_root, u); |
|---|
| 963 | _flow[e] = -_supply[u]; |
|---|
| 964 | _forward[u] = false; |
|---|
| 965 | _potential[u] = max_cost; |
|---|
| 966 | } |
|---|
| 967 | _cost[e] = max_cost; |
|---|
| 968 | _capacity[e] = std::numeric_limits<Capacity>::max(); |
|---|
| 969 | _state[e] = STATE_TREE; |
|---|
| 970 | _pred_edge[u] = e; |
|---|
| 971 | } |
|---|
| 972 | _thread[last] = _root; |
|---|
| 973 | |
|---|
| 974 | return true; |
|---|
| 975 | } |
|---|
| 976 | |
|---|
| 977 | /// Find the join node. |
|---|
| 978 | inline Node findJoinNode() { |
|---|
| 979 | Node u = _graph.source(_in_edge); |
|---|
| 980 | Node v = _graph.target(_in_edge); |
|---|
| 981 | while (u != v) { |
|---|
| 982 | if (_depth[u] == _depth[v]) { |
|---|
| 983 | u = _parent[u]; |
|---|
| 984 | v = _parent[v]; |
|---|
| 985 | } |
|---|
| 986 | else if (_depth[u] > _depth[v]) u = _parent[u]; |
|---|
| 987 | else v = _parent[v]; |
|---|
| 988 | } |
|---|
| 989 | return u; |
|---|
| 990 | } |
|---|
| 991 | |
|---|
| 992 | /// \brief Find the leaving edge of the cycle. |
|---|
| 993 | /// \return \c true if the leaving edge is not the same as the |
|---|
| 994 | /// entering edge. |
|---|
| 995 | inline bool findLeavingEdge() { |
|---|
| 996 | // Initializing first and second nodes according to the direction |
|---|
| 997 | // of the cycle |
|---|
| 998 | if (_state[_in_edge] == STATE_LOWER) { |
|---|
| 999 | first = _graph.source(_in_edge); |
|---|
| 1000 | second = _graph.target(_in_edge); |
|---|
| 1001 | } else { |
|---|
| 1002 | first = _graph.target(_in_edge); |
|---|
| 1003 | second = _graph.source(_in_edge); |
|---|
| 1004 | } |
|---|
| 1005 | delta = _capacity[_in_edge]; |
|---|
| 1006 | bool result = false; |
|---|
| 1007 | Capacity d; |
|---|
| 1008 | Edge e; |
|---|
| 1009 | |
|---|
| 1010 | // Searching the cycle along the path form the first node to the |
|---|
| 1011 | // root node |
|---|
| 1012 | for (Node u = first; u != join; u = _parent[u]) { |
|---|
| 1013 | e = _pred_edge[u]; |
|---|
| 1014 | d = _forward[u] ? _flow[e] : _capacity[e] - _flow[e]; |
|---|
| 1015 | if (d < delta) { |
|---|
| 1016 | delta = d; |
|---|
| 1017 | u_out = u; |
|---|
| 1018 | u_in = first; |
|---|
| 1019 | v_in = second; |
|---|
| 1020 | result = true; |
|---|
| 1021 | } |
|---|
| 1022 | } |
|---|
| 1023 | // Searching the cycle along the path form the second node to the |
|---|
| 1024 | // root node |
|---|
| 1025 | for (Node u = second; u != join; u = _parent[u]) { |
|---|
| 1026 | e = _pred_edge[u]; |
|---|
| 1027 | d = _forward[u] ? _capacity[e] - _flow[e] : _flow[e]; |
|---|
| 1028 | if (d <= delta) { |
|---|
| 1029 | delta = d; |
|---|
| 1030 | u_out = u; |
|---|
| 1031 | u_in = second; |
|---|
| 1032 | v_in = first; |
|---|
| 1033 | result = true; |
|---|
| 1034 | } |
|---|
| 1035 | } |
|---|
| 1036 | return result; |
|---|
| 1037 | } |
|---|
| 1038 | |
|---|
| 1039 | /// Change \c flow and \c state edge maps. |
|---|
| 1040 | inline void changeFlows(bool change) { |
|---|
| 1041 | // Augmenting along the cycle |
|---|
| 1042 | if (delta > 0) { |
|---|
| 1043 | Capacity val = _state[_in_edge] * delta; |
|---|
| 1044 | _flow[_in_edge] += val; |
|---|
| 1045 | for (Node u = _graph.source(_in_edge); u != join; u = _parent[u]) { |
|---|
| 1046 | _flow[_pred_edge[u]] += _forward[u] ? -val : val; |
|---|
| 1047 | } |
|---|
| 1048 | for (Node u = _graph.target(_in_edge); u != join; u = _parent[u]) { |
|---|
| 1049 | _flow[_pred_edge[u]] += _forward[u] ? val : -val; |
|---|
| 1050 | } |
|---|
| 1051 | } |
|---|
| 1052 | // Updating the state of the entering and leaving edges |
|---|
| 1053 | if (change) { |
|---|
| 1054 | _state[_in_edge] = STATE_TREE; |
|---|
| 1055 | _state[_pred_edge[u_out]] = |
|---|
| 1056 | (_flow[_pred_edge[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
|---|
| 1057 | } else { |
|---|
| 1058 | _state[_in_edge] = -_state[_in_edge]; |
|---|
| 1059 | } |
|---|
| 1060 | } |
|---|
| 1061 | |
|---|
| 1062 | /// Update \c thread and \c parent node maps. |
|---|
| 1063 | inline void updateThreadParent() { |
|---|
| 1064 | Node u; |
|---|
| 1065 | v_out = _parent[u_out]; |
|---|
| 1066 | |
|---|
| 1067 | // Handling the case when join and v_out coincide |
|---|
| 1068 | bool par_first = false; |
|---|
| 1069 | if (join == v_out) { |
|---|
| 1070 | for (u = join; u != u_in && u != v_in; u = _thread[u]) ; |
|---|
| 1071 | if (u == v_in) { |
|---|
| 1072 | par_first = true; |
|---|
| 1073 | while (_thread[u] != u_out) u = _thread[u]; |
|---|
| 1074 | first = u; |
|---|
| 1075 | } |
|---|
| 1076 | } |
|---|
| 1077 | |
|---|
| 1078 | // Finding the last successor of u_in (u) and the node after it |
|---|
| 1079 | // (right) according to the thread index |
|---|
| 1080 | for (u = u_in; _depth[_thread[u]] > _depth[u_in]; u = _thread[u]) ; |
|---|
| 1081 | right = _thread[u]; |
|---|
| 1082 | if (_thread[v_in] == u_out) { |
|---|
| 1083 | for (last = u; _depth[last] > _depth[u_out]; last = _thread[last]) ; |
|---|
| 1084 | if (last == u_out) last = _thread[last]; |
|---|
| 1085 | } |
|---|
| 1086 | else last = _thread[v_in]; |
|---|
| 1087 | |
|---|
| 1088 | // Updating stem nodes |
|---|
| 1089 | _thread[v_in] = stem = u_in; |
|---|
| 1090 | par_stem = v_in; |
|---|
| 1091 | while (stem != u_out) { |
|---|
| 1092 | _thread[u] = new_stem = _parent[stem]; |
|---|
| 1093 | |
|---|
| 1094 | // Finding the node just before the stem node (u) according to |
|---|
| 1095 | // the original thread index |
|---|
| 1096 | for (u = new_stem; _thread[u] != stem; u = _thread[u]) ; |
|---|
| 1097 | _thread[u] = right; |
|---|
| 1098 | |
|---|
| 1099 | // Changing the parent node of stem and shifting stem and |
|---|
| 1100 | // par_stem nodes |
|---|
| 1101 | _parent[stem] = par_stem; |
|---|
| 1102 | par_stem = stem; |
|---|
| 1103 | stem = new_stem; |
|---|
| 1104 | |
|---|
| 1105 | // Finding the last successor of stem (u) and the node after it |
|---|
| 1106 | // (right) according to the thread index |
|---|
| 1107 | for (u = stem; _depth[_thread[u]] > _depth[stem]; u = _thread[u]) ; |
|---|
| 1108 | right = _thread[u]; |
|---|
| 1109 | } |
|---|
| 1110 | _parent[u_out] = par_stem; |
|---|
| 1111 | _thread[u] = last; |
|---|
| 1112 | |
|---|
| 1113 | if (join == v_out && par_first) { |
|---|
| 1114 | if (first != v_in) _thread[first] = right; |
|---|
| 1115 | } else { |
|---|
| 1116 | for (u = v_out; _thread[u] != u_out; u = _thread[u]) ; |
|---|
| 1117 | _thread[u] = right; |
|---|
| 1118 | } |
|---|
| 1119 | } |
|---|
| 1120 | |
|---|
| 1121 | /// Update \c pred_edge and \c forward node maps. |
|---|
| 1122 | inline void updatePredEdge() { |
|---|
| 1123 | Node u = u_out, v; |
|---|
| 1124 | while (u != u_in) { |
|---|
| 1125 | v = _parent[u]; |
|---|
| 1126 | _pred_edge[u] = _pred_edge[v]; |
|---|
| 1127 | _forward[u] = !_forward[v]; |
|---|
| 1128 | u = v; |
|---|
| 1129 | } |
|---|
| 1130 | _pred_edge[u_in] = _in_edge; |
|---|
| 1131 | _forward[u_in] = (u_in == _graph.source(_in_edge)); |
|---|
| 1132 | } |
|---|
| 1133 | |
|---|
| 1134 | /// Update \c depth and \c potential node maps. |
|---|
| 1135 | inline void updateDepthPotential() { |
|---|
| 1136 | _depth[u_in] = _depth[v_in] + 1; |
|---|
| 1137 | Cost sigma = _forward[u_in] ? |
|---|
| 1138 | _potential[v_in] - _potential[u_in] - _cost[_pred_edge[u_in]] : |
|---|
| 1139 | _potential[v_in] - _potential[u_in] + _cost[_pred_edge[u_in]]; |
|---|
| 1140 | _potential[u_in] += sigma; |
|---|
| 1141 | for(Node u = _thread[u_in]; _parent[u] != INVALID; u = _thread[u]) { |
|---|
| 1142 | _depth[u] = _depth[_parent[u]] + 1; |
|---|
| 1143 | if (_depth[u] <= _depth[u_in]) break; |
|---|
| 1144 | _potential[u] += sigma; |
|---|
| 1145 | } |
|---|
| 1146 | } |
|---|
| 1147 | |
|---|
| 1148 | /// Execute the algorithm. |
|---|
| 1149 | bool start(PivotRuleEnum pivot_rule) { |
|---|
| 1150 | // Selecting the pivot rule implementation |
|---|
| 1151 | switch (pivot_rule) { |
|---|
| 1152 | case FIRST_ELIGIBLE_PIVOT: |
|---|
| 1153 | return start<FirstEligiblePivotRule>(); |
|---|
| 1154 | case BEST_ELIGIBLE_PIVOT: |
|---|
| 1155 | return start<BestEligiblePivotRule>(); |
|---|
| 1156 | case BLOCK_SEARCH_PIVOT: |
|---|
| 1157 | return start<BlockSearchPivotRule>(); |
|---|
| 1158 | case CANDIDATE_LIST_PIVOT: |
|---|
| 1159 | return start<CandidateListPivotRule>(); |
|---|
| 1160 | case ALTERING_LIST_PIVOT: |
|---|
| 1161 | return start<AlteringListPivotRule>(); |
|---|
| 1162 | } |
|---|
| 1163 | return false; |
|---|
| 1164 | } |
|---|
| 1165 | |
|---|
| 1166 | template<class PivotRuleImplementation> |
|---|
| 1167 | bool start() { |
|---|
| 1168 | PivotRuleImplementation pivot(*this, _edges); |
|---|
| 1169 | |
|---|
| 1170 | // Executing the network simplex algorithm |
|---|
| 1171 | while (pivot.findEnteringEdge()) { |
|---|
| 1172 | join = findJoinNode(); |
|---|
| 1173 | bool change = findLeavingEdge(); |
|---|
| 1174 | changeFlows(change); |
|---|
| 1175 | if (change) { |
|---|
| 1176 | updateThreadParent(); |
|---|
| 1177 | updatePredEdge(); |
|---|
| 1178 | updateDepthPotential(); |
|---|
| 1179 | } |
|---|
| 1180 | } |
|---|
| 1181 | |
|---|
| 1182 | // Checking if the flow amount equals zero on all the artificial |
|---|
| 1183 | // edges |
|---|
| 1184 | for (InEdgeIt e(_graph, _root); e != INVALID; ++e) |
|---|
| 1185 | if (_flow[e] > 0) return false; |
|---|
| 1186 | for (OutEdgeIt e(_graph, _root); e != INVALID; ++e) |
|---|
| 1187 | if (_flow[e] > 0) return false; |
|---|
| 1188 | |
|---|
| 1189 | // Copying flow values to _flow_result |
|---|
| 1190 | if (_lower) { |
|---|
| 1191 | for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) |
|---|
| 1192 | (*_flow_result)[e] = (*_lower)[e] + _flow[_edge_ref[e]]; |
|---|
| 1193 | } else { |
|---|
| 1194 | for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) |
|---|
| 1195 | (*_flow_result)[e] = _flow[_edge_ref[e]]; |
|---|
| 1196 | } |
|---|
| 1197 | // Copying potential values to _potential_result |
|---|
| 1198 | for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n) |
|---|
| 1199 | (*_potential_result)[n] = _potential[_node_ref[n]]; |
|---|
| 1200 | |
|---|
| 1201 | return true; |
|---|
| 1202 | } |
|---|
| 1203 | |
|---|
| 1204 | }; //class NetworkSimplex |
|---|
| 1205 | |
|---|
| 1206 | ///@} |
|---|
| 1207 | |
|---|
| 1208 | } //namespace lemon |
|---|
| 1209 | |
|---|
| 1210 | #endif //LEMON_NETWORK_SIMPLEX_H |
|---|