COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/preflow.h @ 1792:febe52db9b67

Last change on this file since 1792:febe52db9b67 was 1792:febe52db9b67, checked in by Balazs Dezso, 18 years ago

Arrangement of the documentation changed

File size: 23.5 KB
Line 
1/* -*- C++ -*-
2 * lemon/preflow.h - Part of LEMON, a generic C++ optimization library
3 *
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
17#ifndef LEMON_PREFLOW_H
18#define LEMON_PREFLOW_H
19
20#include <vector>
21#include <queue>
22
23#include <lemon/error.h>
24#include <lemon/invalid.h>
25#include <lemon/maps.h>
26#include <lemon/graph_utils.h>
27
28/// \file
29/// \ingroup flowalgs
30/// \brief Implementation of the preflow algorithm.
31
32namespace lemon {
33
34  ///\ingroup flowalgs
35  ///\brief %Preflow algorithms class.
36  ///
37  ///This class provides an implementation of the \e preflow \e
38  ///algorithm producing a flow of maximum value in a directed
39  ///graph. The preflow algorithms are the fastest known max flow algorithms
40  ///up to now. The \e source node, the \e target node, the \e
41  ///capacity of the edges and the \e starting \e flow value of the
42  ///edges should be passed to the algorithm through the
43  ///constructor. It is possible to change these quantities using the
44  ///functions \ref source, \ref target, \ref capacityMap and \ref
45  ///flowMap.
46  ///
47  ///After running \ref lemon::Preflow::phase1() "phase1()"
48  ///or \ref lemon::Preflow::run() "run()", the maximal flow
49  ///value can be obtained by calling \ref flowValue(). The minimum
50  ///value cut can be written into a <tt>bool</tt> node map by
51  ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
52  ///the inclusionwise minimum and maximum of the minimum value cuts,
53  ///resp.)
54  ///
55  ///\param Graph The directed graph type the algorithm runs on.
56  ///\param Num The number type of the capacities and the flow values.
57  ///\param CapacityMap The capacity map type.
58  ///\param FlowMap The flow map type.
59  ///
60  ///\author Jacint Szabo
61  ///\todo Second template parameter is superfluous
62  template <typename Graph, typename Num,
63            typename CapacityMap=typename Graph::template EdgeMap<Num>,
64            typename FlowMap=typename Graph::template EdgeMap<Num> >
65  class Preflow {
66  protected:
67    typedef typename Graph::Node Node;
68    typedef typename Graph::NodeIt NodeIt;
69    typedef typename Graph::EdgeIt EdgeIt;
70    typedef typename Graph::OutEdgeIt OutEdgeIt;
71    typedef typename Graph::InEdgeIt InEdgeIt;
72
73    typedef typename Graph::template NodeMap<Node> NNMap;
74    typedef typename std::vector<Node> VecNode;
75
76    const Graph* _g;
77    Node _source;
78    Node _target;
79    const CapacityMap* _capacity;
80    FlowMap* _flow;
81    int _node_num;      //the number of nodes of G
82   
83    typename Graph::template NodeMap<int> level; 
84    typename Graph::template NodeMap<Num> excess;
85
86    // constants used for heuristics
87    static const int H0=20;
88    static const int H1=1;
89
90  public:
91
92    ///\ref Exception for the case when s=t.
93
94    ///\ref Exception for the case when the source equals the target.
95    class InvalidArgument : public lemon::LogicError {
96    public:
97      virtual const char* exceptionName() const {
98        return "lemon::Preflow::InvalidArgument";
99      }
100    };
101   
102   
103    ///Indicates the property of the starting flow map.
104   
105    ///Indicates the property of the starting flow map.
106    ///The meanings are as follows:
107    ///- \c ZERO_FLOW: constant zero flow
108    ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
109    ///the sum of the out-flows in every node except the \e source and
110    ///the \e target.
111    ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
112    ///least the sum of the out-flows in every node except the \e source.
113    ///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be
114    ///set to the constant zero flow in the beginning of
115    ///the algorithm in this case.
116    ///
117    enum FlowEnum{
118      NO_FLOW,
119      ZERO_FLOW,
120      GEN_FLOW,
121      PRE_FLOW
122    };
123
124    ///Indicates the state of the preflow algorithm.
125
126    ///Indicates the state of the preflow algorithm.
127    ///The meanings are as follows:
128    ///- \c AFTER_NOTHING: before running the algorithm or
129    ///  at an unspecified state.
130    ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
131    ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
132    ///
133    enum StatusEnum {
134      AFTER_NOTHING,
135      AFTER_PREFLOW_PHASE_1,     
136      AFTER_PREFLOW_PHASE_2
137    };
138   
139  protected:
140    FlowEnum flow_prop;
141    StatusEnum status; // Do not needle this flag only if necessary.
142   
143  public:
144    ///The constructor of the class.
145
146    ///The constructor of the class.
147    ///\param _gr The directed graph the algorithm runs on.
148    ///\param _s The source node.
149    ///\param _t The target node.
150    ///\param _cap The capacity of the edges.
151    ///\param _f The flow of the edges.
152    ///Except the graph, all of these parameters can be reset by
153    ///calling \ref source, \ref target, \ref capacityMap and \ref
154    ///flowMap, resp.
155      Preflow(const Graph& _gr, Node _s, Node _t,
156              const CapacityMap& _cap, FlowMap& _f) :
157        _g(&_gr), _source(_s), _target(_t), _capacity(&_cap),
158        _flow(&_f), _node_num(countNodes(_gr)), level(_gr), excess(_gr,0),
159        flow_prop(NO_FLOW), status(AFTER_NOTHING) {
160        if ( _source==_target )
161          throw InvalidArgument();
162      }
163   
164
165                                                                             
166    ///Runs the preflow algorithm. 
167
168    ///Runs the preflow algorithm.
169    ///
170    void run() {
171      phase1(flow_prop);
172      phase2();
173    }
174   
175    ///Runs the preflow algorithm. 
176   
177    ///Runs the preflow algorithm.
178    ///\pre The starting flow map must be
179    /// - a constant zero flow if \c fp is \c ZERO_FLOW,
180    /// - an arbitrary flow if \c fp is \c GEN_FLOW,
181    /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
182    /// - any map if \c fp is NO_FLOW.
183    ///If the starting flow map is a flow or a preflow then
184    ///the algorithm terminates faster.
185    void run(FlowEnum fp) {
186      flow_prop=fp;
187      run();
188    }
189     
190    ///Runs the first phase of the preflow algorithm.
191
192    ///The preflow algorithm consists of two phases, this method runs
193    ///the first phase. After the first phase the maximum flow value
194    ///and a minimum value cut can already be computed, although a
195    ///maximum flow is not yet obtained. So after calling this method
196    ///\ref flowValue returns the value of a maximum flow and \ref
197    ///minCut returns a minimum cut.     
198    ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
199    ///value cuts unless calling \ref phase2. 
200    ///\pre The starting flow must be
201    ///- a constant zero flow if \c fp is \c ZERO_FLOW,
202    ///- an arbitary flow if \c fp is \c GEN_FLOW,
203    ///- an arbitary preflow if \c fp is \c PRE_FLOW,
204    ///- any map if \c fp is NO_FLOW.
205    void phase1(FlowEnum fp)
206    {
207      flow_prop=fp;
208      phase1();
209    }
210
211   
212    ///Runs the first phase of the preflow algorithm.
213
214    ///The preflow algorithm consists of two phases, this method runs
215    ///the first phase. After the first phase the maximum flow value
216    ///and a minimum value cut can already be computed, although a
217    ///maximum flow is not yet obtained. So after calling this method
218    ///\ref flowValue returns the value of a maximum flow and \ref
219    ///minCut returns a minimum cut.
220    ///\warning \ref minMinCut() and \ref maxMinCut() do not
221    ///give minimum value cuts unless calling \ref phase2().
222    void phase1()
223    {
224      int heur0=(int)(H0*_node_num);  //time while running 'bound decrease'
225      int heur1=(int)(H1*_node_num);  //time while running 'highest label'
226      int heur=heur1;         //starting time interval (#of relabels)
227      int numrelabel=0;
228
229      bool what_heur=1;
230      //It is 0 in case 'bound decrease' and 1 in case 'highest label'
231
232      bool end=false;
233      //Needed for 'bound decrease', true means no active
234      //nodes are above bound b.
235
236      int k=_node_num-2;  //bound on the highest level under n containing a node
237      int b=k;    //bound on the highest level under n of an active node
238
239      VecNode first(_node_num, INVALID);
240      NNMap next(*_g, INVALID);
241
242      NNMap left(*_g, INVALID);
243      NNMap right(*_g, INVALID);
244      VecNode level_list(_node_num,INVALID);
245      //List of the nodes in level i<n, set to n.
246
247      preflowPreproc(first, next, level_list, left, right);
248
249      //Push/relabel on the highest level active nodes.
250      while ( true ) {
251        if ( b == 0 ) {
252          if ( !what_heur && !end && k > 0 ) {
253            b=k;
254            end=true;
255          } else break;
256        }
257
258        if ( first[b]==INVALID ) --b;
259        else {
260          end=false;
261          Node w=first[b];
262          first[b]=next[w];
263          int newlevel=push(w, next, first);
264          if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list,
265                                       left, right, b, k, what_heur);
266
267          ++numrelabel;
268          if ( numrelabel >= heur ) {
269            numrelabel=0;
270            if ( what_heur ) {
271              what_heur=0;
272              heur=heur0;
273              end=false;
274            } else {
275              what_heur=1;
276              heur=heur1;
277              b=k;
278            }
279          }
280        }
281      }
282      flow_prop=PRE_FLOW;
283      status=AFTER_PREFLOW_PHASE_1;
284    }
285    // Heuristics:
286    //   2 phase
287    //   gap
288    //   list 'level_list' on the nodes on level i implemented by hand
289    //   stack 'active' on the active nodes on level i     
290    //   runs heuristic 'highest label' for H1*n relabels
291    //   runs heuristic 'bound decrease' for H0*n relabels,
292    //        starts with 'highest label'
293    //   Parameters H0 and H1 are initialized to 20 and 1.
294
295
296    ///Runs the second phase of the preflow algorithm.
297
298    ///The preflow algorithm consists of two phases, this method runs
299    ///the second phase. After calling \ref phase1() and then
300    ///\ref phase2(),
301    /// \ref flowMap() return a maximum flow, \ref flowValue
302    ///returns the value of a maximum flow, \ref minCut returns a
303    ///minimum cut, while the methods \ref minMinCut and \ref
304    ///maxMinCut return the inclusionwise minimum and maximum cuts of
305    ///minimum value, resp.  \pre \ref phase1 must be called before.
306    void phase2()
307    {
308
309      int k=_node_num-2;  //bound on the highest level under n containing a node
310      int b=k;    //bound on the highest level under n of an active node
311
312   
313      VecNode first(_node_num, INVALID);
314      NNMap next(*_g, INVALID);
315      level.set(_source,0);
316      std::queue<Node> bfs_queue;
317      bfs_queue.push(_source);
318
319      while ( !bfs_queue.empty() ) {
320
321        Node v=bfs_queue.front();
322        bfs_queue.pop();
323        int l=level[v]+1;
324
325        for(InEdgeIt e(*_g,v); e!=INVALID; ++e) {
326          if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
327          Node u=_g->source(e);
328          if ( level[u] >= _node_num ) {
329            bfs_queue.push(u);
330            level.set(u, l);
331            if ( excess[u] > 0 ) {
332              next.set(u,first[l]);
333              first[l]=u;
334            }
335          }
336        }
337
338        for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) {
339          if ( 0 >= (*_flow)[e] ) continue;
340          Node u=_g->target(e);
341          if ( level[u] >= _node_num ) {
342            bfs_queue.push(u);
343            level.set(u, l);
344            if ( excess[u] > 0 ) {
345              next.set(u,first[l]);
346              first[l]=u;
347            }
348          }
349        }
350      }
351      b=_node_num-2;
352
353      while ( true ) {
354
355        if ( b == 0 ) break;
356        if ( first[b]==INVALID ) --b;
357        else {
358          Node w=first[b];
359          first[b]=next[w];
360          int newlevel=push(w,next, first);
361         
362          //relabel
363          if ( excess[w] > 0 ) {
364            level.set(w,++newlevel);
365            next.set(w,first[newlevel]);
366            first[newlevel]=w;
367            b=newlevel;
368          }
369        }
370      } // while(true)
371      flow_prop=GEN_FLOW;
372      status=AFTER_PREFLOW_PHASE_2;
373    }
374
375    /// Returns the value of the maximum flow.
376
377    /// Returns the value of the maximum flow by returning the excess
378    /// of the target node \c t. This value equals to the value of
379    /// the maximum flow already after running \ref phase1.
380    Num flowValue() const {
381      return excess[_target];
382    }
383
384
385    ///Returns a minimum value cut.
386
387    ///Sets \c M to the characteristic vector of a minimum value
388    ///cut. This method can be called both after running \ref
389    ///phase1 and \ref phase2. It is much faster after
390    ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
391    ///If \ref minCut() is called after \ref phase2() then M should
392    ///be initialized to false.
393    template<typename _CutMap>
394    void minCut(_CutMap& M) const {
395      switch ( status ) {
396        case AFTER_PREFLOW_PHASE_1:
397        for(NodeIt v(*_g); v!=INVALID; ++v) {
398          if (level[v] < _node_num) {
399            M.set(v, false);
400          } else {
401            M.set(v, true);
402          }
403        }
404        break;
405        case AFTER_PREFLOW_PHASE_2:
406        minMinCut(M);
407        break;
408        case AFTER_NOTHING:
409        break;
410      }
411    }
412
413    ///Returns the inclusionwise minimum of the minimum value cuts.
414
415    ///Sets \c M to the characteristic vector of the minimum value cut
416    ///which is inclusionwise minimum. It is computed by processing a
417    ///bfs from the source node \c s in the residual graph.  \pre M
418    ///should be a node map of bools initialized to false.  \pre \ref
419    ///phase2 should already be run.
420    template<typename _CutMap>
421    void minMinCut(_CutMap& M) const {
422
423      std::queue<Node> queue;
424      M.set(_source,true);
425      queue.push(_source);
426     
427      while (!queue.empty()) {
428        Node w=queue.front();
429        queue.pop();
430       
431        for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
432          Node v=_g->target(e);
433          if (!M[v] && (*_flow)[e] < (*_capacity)[e] ) {
434            queue.push(v);
435            M.set(v, true);
436          }
437        }
438       
439        for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
440          Node v=_g->source(e);
441          if (!M[v] && (*_flow)[e] > 0 ) {
442            queue.push(v);
443            M.set(v, true);
444          }
445        }
446      }
447    }
448   
449    ///Returns the inclusionwise maximum of the minimum value cuts.
450
451    ///Sets \c M to the characteristic vector of the minimum value cut
452    ///which is inclusionwise maximum. It is computed by processing a
453    ///backward bfs from the target node \c t in the residual graph.
454    ///\pre \ref phase2() or run() should already be run.
455    template<typename _CutMap>
456    void maxMinCut(_CutMap& M) const {
457
458      for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true);
459
460      std::queue<Node> queue;
461
462      M.set(_target,false);
463      queue.push(_target);
464
465      while (!queue.empty()) {
466        Node w=queue.front();
467        queue.pop();
468
469        for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
470          Node v=_g->source(e);
471          if (M[v] && (*_flow)[e] < (*_capacity)[e] ) {
472            queue.push(v);
473            M.set(v, false);
474          }
475        }
476
477        for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
478          Node v=_g->target(e);
479          if (M[v] && (*_flow)[e] > 0 ) {
480            queue.push(v);
481            M.set(v, false);
482          }
483        }
484      }
485    }
486
487    ///Sets the source node to \c _s.
488
489    ///Sets the source node to \c _s.
490    ///
491    void source(Node _s) {
492      _source=_s;
493      if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
494      status=AFTER_NOTHING;
495    }
496
497    ///Returns the source node.
498
499    ///Returns the source node.
500    ///
501    Node source() const {
502      return _source;
503    }
504
505    ///Sets the target node to \c _t.
506
507    ///Sets the target node to \c _t.
508    ///
509    void target(Node _t) {
510      _target=_t;
511      if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
512      status=AFTER_NOTHING;
513    }
514
515    ///Returns the target node.
516
517    ///Returns the target node.
518    ///
519    Node target() const {
520      return _target;
521    }
522
523    /// Sets the edge map of the capacities to _cap.
524
525    /// Sets the edge map of the capacities to _cap.
526    ///
527    void capacityMap(const CapacityMap& _cap) {
528      _capacity=&_cap;
529      status=AFTER_NOTHING;
530    }
531    /// Returns a reference to capacity map.
532
533    /// Returns a reference to capacity map.
534    ///
535    const CapacityMap &capacityMap() const {
536      return *_capacity;
537    }
538
539    /// Sets the edge map of the flows to _flow.
540
541    /// Sets the edge map of the flows to _flow.
542    ///
543    void flowMap(FlowMap& _f) {
544      _flow=&_f;
545      flow_prop=NO_FLOW;
546      status=AFTER_NOTHING;
547    }
548     
549    /// Returns a reference to flow map.
550
551    /// Returns a reference to flow map.
552    ///
553    const FlowMap &flowMap() const {
554      return *_flow;
555    }
556
557  private:
558
559    int push(Node w, NNMap& next, VecNode& first) {
560
561      int lev=level[w];
562      Num exc=excess[w];
563      int newlevel=_node_num;       //bound on the next level of w
564
565      for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
566        if ( (*_flow)[e] >= (*_capacity)[e] ) continue;
567        Node v=_g->target(e);
568
569        if( lev > level[v] ) { //Push is allowed now
570         
571          if ( excess[v]<=0 && v!=_target && v!=_source ) {
572            next.set(v,first[level[v]]);
573            first[level[v]]=v;
574          }
575
576          Num cap=(*_capacity)[e];
577          Num flo=(*_flow)[e];
578          Num remcap=cap-flo;
579         
580          if ( remcap >= exc ) { //A nonsaturating push.
581           
582            _flow->set(e, flo+exc);
583            excess.set(v, excess[v]+exc);
584            exc=0;
585            break;
586
587          } else { //A saturating push.
588            _flow->set(e, cap);
589            excess.set(v, excess[v]+remcap);
590            exc-=remcap;
591          }
592        } else if ( newlevel > level[v] ) newlevel = level[v];
593      } //for out edges wv
594
595      if ( exc > 0 ) {
596        for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
597         
598          if( (*_flow)[e] <= 0 ) continue;
599          Node v=_g->source(e);
600
601          if( lev > level[v] ) { //Push is allowed now
602
603            if ( excess[v]<=0 && v!=_target && v!=_source ) {
604              next.set(v,first[level[v]]);
605              first[level[v]]=v;
606            }
607
608            Num flo=(*_flow)[e];
609
610            if ( flo >= exc ) { //A nonsaturating push.
611
612              _flow->set(e, flo-exc);
613              excess.set(v, excess[v]+exc);
614              exc=0;
615              break;
616            } else {  //A saturating push.
617
618              excess.set(v, excess[v]+flo);
619              exc-=flo;
620              _flow->set(e,0);
621            }
622          } else if ( newlevel > level[v] ) newlevel = level[v];
623        } //for in edges vw
624
625      } // if w still has excess after the out edge for cycle
626
627      excess.set(w, exc);
628     
629      return newlevel;
630    }
631   
632   
633   
634    void preflowPreproc(VecNode& first, NNMap& next,
635                        VecNode& level_list, NNMap& left, NNMap& right)
636    {
637      for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num);
638      std::queue<Node> bfs_queue;
639     
640      if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
641        //Reverse_bfs from t in the residual graph,
642        //to find the starting level.
643        level.set(_target,0);
644        bfs_queue.push(_target);
645       
646        while ( !bfs_queue.empty() ) {
647         
648          Node v=bfs_queue.front();
649          bfs_queue.pop();
650          int l=level[v]+1;
651         
652          for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
653            if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
654            Node w=_g->source(e);
655            if ( level[w] == _node_num && w != _source ) {
656              bfs_queue.push(w);
657              Node z=level_list[l];
658              if ( z!=INVALID ) left.set(z,w);
659              right.set(w,z);
660              level_list[l]=w;
661              level.set(w, l);
662            }
663          }
664         
665          for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
666            if ( 0 >= (*_flow)[e] ) continue;
667            Node w=_g->target(e);
668            if ( level[w] == _node_num && w != _source ) {
669              bfs_queue.push(w);
670              Node z=level_list[l];
671              if ( z!=INVALID ) left.set(z,w);
672              right.set(w,z);
673              level_list[l]=w;
674              level.set(w, l);
675            }
676          }
677        } //while
678      } //if
679
680
681      switch (flow_prop) {
682        case NO_FLOW: 
683        for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0);
684        case ZERO_FLOW:
685        for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
686       
687        //Reverse_bfs from t, to find the starting level.
688        level.set(_target,0);
689        bfs_queue.push(_target);
690       
691        while ( !bfs_queue.empty() ) {
692         
693          Node v=bfs_queue.front();
694          bfs_queue.pop();
695          int l=level[v]+1;
696         
697          for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
698            Node w=_g->source(e);
699            if ( level[w] == _node_num && w != _source ) {
700              bfs_queue.push(w);
701              Node z=level_list[l];
702              if ( z!=INVALID ) left.set(z,w);
703              right.set(w,z);
704              level_list[l]=w;
705              level.set(w, l);
706            }
707          }
708        }
709       
710        //the starting flow
711        for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
712          Num c=(*_capacity)[e];
713          if ( c <= 0 ) continue;
714          Node w=_g->target(e);
715          if ( level[w] < _node_num ) {
716            if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
717              next.set(w,first[level[w]]);
718              first[level[w]]=w;
719            }
720            _flow->set(e, c);
721            excess.set(w, excess[w]+c);
722          }
723        }
724        break;
725
726        case GEN_FLOW:
727        for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
728        {
729          Num exc=0;
730          for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e];
731          for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e];
732          excess.set(_target,exc);
733        }
734
735        //the starting flow
736        for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e)  {
737          Num rem=(*_capacity)[e]-(*_flow)[e];
738          if ( rem <= 0 ) continue;
739          Node w=_g->target(e);
740          if ( level[w] < _node_num ) {
741            if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
742              next.set(w,first[level[w]]);
743              first[level[w]]=w;
744            }   
745            _flow->set(e, (*_capacity)[e]);
746            excess.set(w, excess[w]+rem);
747          }
748        }
749       
750        for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) {
751          if ( (*_flow)[e] <= 0 ) continue;
752          Node w=_g->source(e);
753          if ( level[w] < _node_num ) {
754            if ( excess[w] <= 0 && w!=_target ) {
755              next.set(w,first[level[w]]);
756              first[level[w]]=w;
757            } 
758            excess.set(w, excess[w]+(*_flow)[e]);
759            _flow->set(e, 0);
760          }
761        }
762        break;
763
764        case PRE_FLOW: 
765        //the starting flow
766        for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
767          Num rem=(*_capacity)[e]-(*_flow)[e];
768          if ( rem <= 0 ) continue;
769          Node w=_g->target(e);
770          if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]);
771        }
772       
773        for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
774          if ( (*_flow)[e] <= 0 ) continue;
775          Node w=_g->source(e);
776          if ( level[w] < _node_num ) _flow->set(e, 0);
777        }
778       
779        //computing the excess
780        for(NodeIt w(*_g); w!=INVALID; ++w) {
781          Num exc=0;
782          for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e];
783          for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e];
784          excess.set(w,exc);
785         
786          //putting the active nodes into the stack
787          int lev=level[w];
788            if ( exc > 0 && lev < _node_num && Node(w) != _target ) {
789              next.set(w,first[lev]);
790              first[lev]=w;
791            }
792        }
793        break;
794      } //switch
795    } //preflowPreproc
796
797
798    void relabel(Node w, int newlevel, VecNode& first, NNMap& next,
799                 VecNode& level_list, NNMap& left,
800                 NNMap& right, int& b, int& k, bool what_heur )
801    {
802
803      int lev=level[w];
804
805      Node right_n=right[w];
806      Node left_n=left[w];
807
808      //unlacing starts
809      if ( right_n!=INVALID ) {
810        if ( left_n!=INVALID ) {
811          right.set(left_n, right_n);
812          left.set(right_n, left_n);
813        } else {
814          level_list[lev]=right_n;
815          left.set(right_n, INVALID);
816        }
817      } else {
818        if ( left_n!=INVALID ) {
819          right.set(left_n, INVALID);
820        } else {
821          level_list[lev]=INVALID;
822        }
823      }
824      //unlacing ends
825
826      if ( level_list[lev]==INVALID ) {
827
828        //gapping starts
829        for (int i=lev; i!=k ; ) {
830          Node v=level_list[++i];
831          while ( v!=INVALID ) {
832            level.set(v,_node_num);
833            v=right[v];
834          }
835          level_list[i]=INVALID;
836          if ( !what_heur ) first[i]=INVALID;
837        }
838
839        level.set(w,_node_num);
840        b=lev-1;
841        k=b;
842        //gapping ends
843
844      } else {
845
846        if ( newlevel == _node_num ) level.set(w,_node_num);
847        else {
848          level.set(w,++newlevel);
849          next.set(w,first[newlevel]);
850          first[newlevel]=w;
851          if ( what_heur ) b=newlevel;
852          if ( k < newlevel ) ++k;      //now k=newlevel
853          Node z=level_list[newlevel];
854          if ( z!=INVALID ) left.set(z,w);
855          right.set(w,z);
856          left.set(w,INVALID);
857          level_list[newlevel]=w;
858        }
859      }
860    } //relabel
861
862  };
863
864  ///\ingroup flowalgs
865  ///\brief Function type interface for Preflow algorithm.
866  ///
867  ///Function type interface for Preflow algorithm.
868  ///\sa Preflow
869  template<class GR, class CM, class FM>
870  Preflow<GR,typename CM::Value,CM,FM> preflow(const GR &g,
871                            typename GR::Node source,
872                            typename GR::Node target,
873                            const CM &cap,
874                            FM &flow
875                            )
876  {
877    return Preflow<GR,typename CM::Value,CM,FM>(g,source,target,cap,flow);
878  }
879
880} //namespace lemon
881
882#endif //LEMON_PREFLOW_H
Note: See TracBrowser for help on using the repository browser.