COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/simann.h @ 1970:bd88ea06ab69

Last change on this file since 1970:bd88ea06ab69 was 1956:a055123339d5, checked in by Alpar Juttner, 18 years ago

Unified copyright notices

File size: 12.5 KB
RevLine 
[1956]1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
[1633]19#ifndef LEMON_SIMANN_H
20#define LEMON_SIMANN_H
21
22/// \ingroup experimental
23/// \file
24/// \brief Simulated annealing framework.
[1847]25///
26/// \todo A test and some demo should be added
27/// \todo Doc should be improved
[1633]28/// \author Akos Ladanyi
29
30#include <cstdlib>
31#include <cmath>
[1918]32#include <limits>
[1633]33#include <lemon/time_measure.h>
34
35namespace lemon {
36
37/// \addtogroup experimental
38/// @{
39
[1932]40  class SimAnnBase;
41
[1918]42  /// \brief A base class for controllers.
[1633]43  class ControllerBase {
[1918]44  public:
[1633]45    friend class SimAnnBase;
[1918]46    /// \brief Pointer to the simulated annealing base class.
[1633]47    SimAnnBase *simann;
[1918]48    /// \brief Initializes the controller.
[1633]49    virtual void init() {}
[1918]50    /// \brief This is called by the simulated annealing class when a
51    /// neighbouring state gets accepted.
[1633]52    virtual void acceptEvent() {}
[1918]53    /// \brief This is called by the simulated annealing class when the
54    /// accepted neighbouring state's cost is less than the best found one's.
[1633]55    virtual void improveEvent() {}
[1918]56    /// \brief This is called by the simulated annealing class when a
57    /// neighbouring state gets rejected.
[1633]58    virtual void rejectEvent() {}
[1918]59    /// \brief Decides whether to continue the annealing process or not.
[1633]60    virtual bool next() = 0;
[1918]61    /// \brief Decides whether to accept the current solution or not.
[1633]62    virtual bool accept() = 0;
[1918]63    /// \brief Destructor.
64    virtual ~ControllerBase() {}
[1633]65  };
66
[1918]67  /// \brief Skeleton of an entity class.
[1633]68  class EntityBase {
69  public:
[1918]70    /// \brief Makes a minor change to the entity.
71    /// \return the new cost
[1633]72    virtual double mutate() = 0;
[1918]73    /// \brief Restores the entity to its previous state i.e. reverts the
74    /// effects of the last mutate().
[1633]75    virtual void revert() = 0;
[1918]76    /// \brief Makes a copy of the entity.
[1633]77    virtual EntityBase* clone() = 0;
[1918]78    /// \brief Makes a major change to the entity.
[1633]79    virtual void randomize() = 0;
[1918]80    /// \brief Destructor.
81    virtual ~EntityBase() {}
[1633]82  };
83
[1918]84  /// \brief Simulated annealing abstract base class.
85  /// Can be used to derive a custom simulated annealing class if \ref SimAnn
86  /// doesn't fit your needs.
[1633]87  class SimAnnBase {
88  private:
[1918]89    /// \brief Pointer to the controller.
[1633]90    ControllerBase *controller;
[1918]91    /// \brief Cost of the current solution.
[1633]92    double curr_cost;
[1918]93    /// \brief Cost of the best solution.
[1633]94    double best_cost;
[1918]95    /// \brief Cost of the previous solution.
[1633]96    double prev_cost;
[1918]97    /// \brief Cost of the solution preceding the previous one.
[1633]98    double prev_prev_cost;
[1918]99    /// \brief Number of iterations.
[1633]100    long iter;
[1918]101    /// \brief Number of iterations which did not improve the solution since
102    /// the last improvement.
[1633]103    long last_impr;
104  protected:
[1918]105    /// \brief Step to a neighbouring state.
[1633]106    virtual double mutate() = 0;
[1918]107    /// \brief Reverts the last mutate().
[1633]108    virtual void revert() = 0;
[1918]109    /// \brief Saves the current solution as the best one.
[1633]110    virtual void saveAsBest() = 0;
[1918]111    /// \brief Does initializations before each run.
[1633]112    virtual void init() {
113      controller->init();
114      curr_cost = prev_cost = prev_prev_cost = best_cost =
115        std::numeric_limits<double>::infinity();
116      iter = last_impr = 0;
117    }
118  public:
[1918]119    /// \brief Sets the controller class to use.
[1633]120    void setController(ControllerBase &_controller) {
121      controller = &_controller;
122      controller->simann = this;
123    }
[1918]124    /// \brief Returns the cost of the current solution.
[1633]125    double getCurrCost() const { return curr_cost; }
[1918]126    /// \brief Returns the cost of the previous solution.
[1633]127    double getPrevCost() const { return prev_cost; }
[1918]128    /// \brief Returns the cost of the best solution.
[1633]129    double getBestCost() const { return best_cost; }
[1918]130    /// \brief Returns the number of iterations done.
[1633]131    long getIter() const { return iter; }
[1918]132    /// \brief Returns the ordinal number of the last iteration when the
133    /// solution was improved.
[1633]134    long getLastImpr() const { return last_impr; }
[1918]135    /// \brief Performs one iteration.
[1633]136    bool step() {
137      iter++;
138      prev_prev_cost = prev_cost;
139      prev_cost = curr_cost;
140      curr_cost = mutate();
141      if (controller->accept()) {
142        controller->acceptEvent();
143        last_impr = iter;
144        if (curr_cost < best_cost) {
145          best_cost = curr_cost;
146          saveAsBest();
147          controller->improveEvent();
148        }
149      }
150      else {
151        revert();
152        curr_cost = prev_cost;
153        prev_cost = prev_prev_cost;
154        controller->rejectEvent();
155      }
156      return controller->next();
157    }
[1918]158    /// \brief Performs a given number of iterations.
159    /// \param n the number of iterations
[1633]160    bool step(int n) {
161      for(; n > 0 && step(); --n) ;
162      return !n;
163    }
[1918]164    /// \brief Starts the annealing process.
[1633]165    void run() {
166      init();
167      do { } while (step());
168    }
[1918]169    /// \brief Destructor.
170    virtual ~SimAnnBase() {}
[1633]171  };
172
[1918]173  /// \brief Simulated annealing class.
[1633]174  class SimAnn : public SimAnnBase {
175  private:
[1918]176    /// \brief Pointer to the current entity.
[1633]177    EntityBase *curr_ent;
[1918]178    /// \brief Pointer to the best entity.
[1633]179    EntityBase *best_ent;
[1918]180    /// \brief Does initializations before each run.
[1633]181    void init() {
182      SimAnnBase::init();
183      if (best_ent) delete best_ent;
184      best_ent = NULL;
185      curr_ent->randomize();
186    }
187  public:
[1918]188    /// \brief Constructor.
[1633]189    SimAnn() : curr_ent(NULL), best_ent(NULL) {}
[1918]190    /// \brief Destructor.
[1633]191    virtual ~SimAnn() {
192      if (best_ent) delete best_ent;
193    }
[1918]194    /// \brief Step to a neighbouring state.
[1633]195    double mutate() {
196      return curr_ent->mutate();
197    }
[1918]198    /// \brief Reverts the last mutate().
[1633]199    void revert() {
200      curr_ent->revert();
201    }
[1918]202    /// \brief Saves the current solution as the best one.
[1633]203    void saveAsBest() {
204      if (best_ent) delete best_ent;
205      best_ent = curr_ent->clone();
206    }
[1918]207    /// \brief Sets the current entity.
[1633]208    void setEntity(EntityBase &_ent) {
209      curr_ent = &_ent;
210    }
[1918]211    /// \brief Returns a copy of the best found entity.
[1633]212    EntityBase* getBestEntity() { return best_ent->clone(); }
213  };
214
[1918]215  /// \brief A simple controller for the simulated annealing class.
216  /// This controller starts from a given initial temperature and evenly
217  /// decreases it.
[1633]218  class SimpleController : public ControllerBase {
[1918]219  private:
220    /// \brief Maximum number of iterations.
221    long max_iter;
222    /// \brief Maximum number of iterations which do not improve the
223    /// solution.
224    long max_no_impr;
225    /// \brief Temperature.
226    double temp;
227    /// \brief Annealing factor.
228    double ann_fact;
229    /// \brief Constructor.
230    /// \param _max_iter maximum number of iterations
231    /// \param _max_no_impr maximum number of consecutive iterations which do
232    ///        not yield a better solution
233    /// \param _temp initial temperature
234    /// \param _ann_fact annealing factor
[1633]235  public:
236    SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
237    double _temp = 1000.0, double _ann_fact = 0.9999) : max_iter(_max_iter),
238      max_no_impr(_max_no_impr), temp(_temp), ann_fact(_ann_fact)
239    {
240      srand48(time(0));
241    }
[1918]242    /// \brief This is called when a neighbouring state gets accepted.
[1633]243    void acceptEvent() {}
[1918]244    /// \brief This is called when the accepted neighbouring state's cost is
245    /// less than the best found one's.
[1633]246    void improveEvent() {}
[1918]247    /// \brief This is called when a neighbouring state gets rejected.
[1633]248    void rejectEvent() {}
[1918]249    /// \brief Decides whether to continue the annealing process or not. Also
250    /// decreases the temperature.
[1633]251    bool next() {
252      temp *= ann_fact;
253      bool quit = (simann->getIter() > max_iter) ||
254        (simann->getIter() - simann->getLastImpr() > max_no_impr);
255      return !quit;
256    }
[1918]257    /// \brief Decides whether to accept the current solution or not.
[1633]258    bool accept() {
[1918]259      double cost_diff = simann->getCurrCost() - simann->getPrevCost();
260      return (drand48() <= exp(-(cost_diff / temp)));
[1633]261    }
[1918]262    /// \brief Destructor.
263    virtual ~SimpleController() {}
[1633]264  };
265
[1918]266  /// \brief A controller with preset running time for the simulated annealing
267  /// class.
268  /// With this controller you can set the running time of the annealing
269  /// process in advance. It works the following way: the controller measures
270  /// a kind of divergence. The divergence is the difference of the average
271  /// cost of the recently found solutions the cost of the best found one. In
272  /// case this divergence is greater than a given threshold, then we decrease
273  /// the annealing factor, that is we cool the system faster. In case the
274  /// divergence is lower than the threshold, then we increase the temperature.
275  /// The threshold is a function of the elapsed time which reaches zero at the
276  /// desired end time.
[1633]277  class AdvancedController : public ControllerBase {
278  private:
[1918]279    /// \brief Timer class to measure the elapsed time.
[1633]280    Timer timer;
[1918]281    /// \brief Calculates the threshold value.
282    /// \param time the elapsed time in seconds
[1633]283    virtual double threshold(double time) {
284      return (-1.0) * start_threshold / end_time * time + start_threshold;
285    }
[1918]286    /// \brief Parameter used to calculate the running average.
287    double alpha;
288    /// \brief Parameter used to decrease the annealing factor.
289    double beta;
290    /// \brief Parameter used to increase the temperature.
291    double gamma;
292    /// \brief The time at the end of the algorithm.
293    double end_time;
294    /// \brief The time at the start of the algorithm.
295    double start_time;
296    /// \brief Starting threshold.
297    double start_threshold;
298    /// \brief Average cost of recent solutions.
299    double avg_cost;
300    /// \brief Temperature.
301    double temp;
302    /// \brief Annealing factor.
303    double ann_fact;
304    /// \brief Initial annealing factor.
305    double init_ann_fact;
306    /// \brief True when the annealing process has been started.
307    bool start;
[1633]308  public:
[1918]309    /// \brief Constructor.
310    /// \param _end_time running time in seconds
311    /// \param _alpha parameter used to calculate the running average
312    /// \param _beta parameter used to decrease the annealing factor
313    /// \param _gamma parameter used to increase the temperature
314    /// \param _ann_fact initial annealing factor
[1633]315    AdvancedController(double _end_time, double _alpha = 0.2,
316    double _beta = 0.9, double _gamma = 1.6, double _ann_fact = 0.9999) :
317    alpha(_alpha), beta(_beta), gamma(_gamma), end_time(_end_time),
[1918]318    ann_fact(_ann_fact), init_ann_fact(_ann_fact), start(false)
[1633]319    {
320      srand48(time(0));
321    }
[1918]322    /// \brief Does initializations before each run.
[1633]323    void init() {
324      avg_cost = simann->getCurrCost();
325    }
[1918]326    /// \brief This is called when a neighbouring state gets accepted.
[1633]327    void acceptEvent() {
328      avg_cost = alpha * simann->getCurrCost() + (1.0 - alpha) * avg_cost;
[1918]329      if (!start) {
[1633]330        static int cnt = 0;
331        cnt++;
332        if (cnt >= 100) {
333          // calculate starting threshold and starting temperature
334          start_threshold = 5.0 * fabs(simann->getBestCost() - avg_cost);
335          temp = 10000.0;
[1918]336          start = true;
[1847]337          timer.restart();
[1633]338        }
339      }
340    }
[1918]341    /// \brief Decides whether to continue the annealing process or not.
[1633]342    bool next() {
[1918]343      if (!start) {
[1633]344        return true;
345      }
346      else {
[1918]347        double elapsed_time = timer.realTime();
[1633]348        if (fabs(avg_cost - simann->getBestCost()) > threshold(elapsed_time)) {
349          // decrease the annealing factor
350          ann_fact *= beta;
351        }
352        else {
353          // increase the temperature
354          temp *= gamma;
355          // reset the annealing factor
356          ann_fact = init_ann_fact;
357        }
358        temp *= ann_fact;
359        return elapsed_time < end_time;
360      }
361    }
[1918]362    /// \brief Decides whether to accept the current solution or not.
[1633]363    bool accept() {
[1918]364      if (!start) {
[1633]365        return true;
366      }
367      else {
[1918]368        double cost_diff = simann->getCurrCost() - simann->getPrevCost();
369        return (drand48() <= exp(-(cost_diff / temp)));
[1633]370      }
371    }
[1918]372    /// \brief Destructor.
373    virtual ~AdvancedController() {}
[1633]374  };
375
376/// @}
377
378}
379
380#endif
Note: See TracBrowser for help on using the repository browser.