1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_TOPOLOGY_H |
---|
20 | #define LEMON_TOPOLOGY_H |
---|
21 | |
---|
22 | #include <lemon/dfs.h> |
---|
23 | #include <lemon/bfs.h> |
---|
24 | #include <lemon/graph_utils.h> |
---|
25 | #include <lemon/graph_adaptor.h> |
---|
26 | #include <lemon/maps.h> |
---|
27 | |
---|
28 | #include <lemon/concept/graph.h> |
---|
29 | #include <lemon/concept/ugraph.h> |
---|
30 | #include <lemon/concept_check.h> |
---|
31 | |
---|
32 | #include <lemon/bin_heap.h> |
---|
33 | #include <lemon/bucket_heap.h> |
---|
34 | |
---|
35 | #include <stack> |
---|
36 | #include <functional> |
---|
37 | |
---|
38 | /// \ingroup topology |
---|
39 | /// \file |
---|
40 | /// \brief Topology related algorithms |
---|
41 | /// |
---|
42 | /// Topology related algorithms |
---|
43 | |
---|
44 | namespace lemon { |
---|
45 | |
---|
46 | /// \ingroup topology |
---|
47 | /// |
---|
48 | /// \brief Check that the given undirected graph is connected. |
---|
49 | /// |
---|
50 | /// Check that the given undirected graph connected. |
---|
51 | /// \param graph The undirected graph. |
---|
52 | /// \return %True when there is path between any two nodes in the graph. |
---|
53 | /// \note By definition, the empty graph is connected. |
---|
54 | template <typename UGraph> |
---|
55 | bool connected(const UGraph& graph) { |
---|
56 | checkConcept<concept::UGraph, UGraph>(); |
---|
57 | typedef typename UGraph::NodeIt NodeIt; |
---|
58 | if (NodeIt(graph) == INVALID) return true; |
---|
59 | Dfs<UGraph> dfs(graph); |
---|
60 | dfs.run(NodeIt(graph)); |
---|
61 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
62 | if (!dfs.reached(it)) { |
---|
63 | return false; |
---|
64 | } |
---|
65 | } |
---|
66 | return true; |
---|
67 | } |
---|
68 | |
---|
69 | /// \ingroup topology |
---|
70 | /// |
---|
71 | /// \brief Count the number of connected components of an undirected graph |
---|
72 | /// |
---|
73 | /// Count the number of connected components of an undirected graph |
---|
74 | /// |
---|
75 | /// \param graph The graph. It should be undirected. |
---|
76 | /// \return The number of components |
---|
77 | /// \note By definition, the empty graph consists |
---|
78 | /// of zero connected components. |
---|
79 | template <typename UGraph> |
---|
80 | int countConnectedComponents(const UGraph &graph) { |
---|
81 | checkConcept<concept::UGraph, UGraph>(); |
---|
82 | typedef typename UGraph::Node Node; |
---|
83 | typedef typename UGraph::Edge Edge; |
---|
84 | |
---|
85 | typedef NullMap<Node, Edge> PredMap; |
---|
86 | typedef NullMap<Node, int> DistMap; |
---|
87 | |
---|
88 | int compNum = 0; |
---|
89 | typename Bfs<UGraph>:: |
---|
90 | template DefPredMap<PredMap>:: |
---|
91 | template DefDistMap<DistMap>:: |
---|
92 | Create bfs(graph); |
---|
93 | |
---|
94 | PredMap predMap; |
---|
95 | bfs.predMap(predMap); |
---|
96 | |
---|
97 | DistMap distMap; |
---|
98 | bfs.distMap(distMap); |
---|
99 | |
---|
100 | bfs.init(); |
---|
101 | for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) { |
---|
102 | if (!bfs.reached(n)) { |
---|
103 | bfs.addSource(n); |
---|
104 | bfs.start(); |
---|
105 | ++compNum; |
---|
106 | } |
---|
107 | } |
---|
108 | return compNum; |
---|
109 | } |
---|
110 | |
---|
111 | /// \ingroup topology |
---|
112 | /// |
---|
113 | /// \brief Find the connected components of an undirected graph |
---|
114 | /// |
---|
115 | /// Find the connected components of an undirected graph. |
---|
116 | /// |
---|
117 | /// \image html connected_components.png |
---|
118 | /// \image latex connected_components.eps "Connected components" width=\textwidth |
---|
119 | /// |
---|
120 | /// \param graph The graph. It should be undirected. |
---|
121 | /// \retval compMap A writable node map. The values will be set from 0 to |
---|
122 | /// the number of the connected components minus one. Each values of the map |
---|
123 | /// will be set exactly once, the values of a certain component will be |
---|
124 | /// set continuously. |
---|
125 | /// \return The number of components |
---|
126 | /// |
---|
127 | template <class UGraph, class NodeMap> |
---|
128 | int connectedComponents(const UGraph &graph, NodeMap &compMap) { |
---|
129 | checkConcept<concept::UGraph, UGraph>(); |
---|
130 | typedef typename UGraph::Node Node; |
---|
131 | typedef typename UGraph::Edge Edge; |
---|
132 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); |
---|
133 | |
---|
134 | typedef NullMap<Node, Edge> PredMap; |
---|
135 | typedef NullMap<Node, int> DistMap; |
---|
136 | |
---|
137 | int compNum = 0; |
---|
138 | typename Bfs<UGraph>:: |
---|
139 | template DefPredMap<PredMap>:: |
---|
140 | template DefDistMap<DistMap>:: |
---|
141 | Create bfs(graph); |
---|
142 | |
---|
143 | PredMap predMap; |
---|
144 | bfs.predMap(predMap); |
---|
145 | |
---|
146 | DistMap distMap; |
---|
147 | bfs.distMap(distMap); |
---|
148 | |
---|
149 | bfs.init(); |
---|
150 | for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) { |
---|
151 | if(!bfs.reached(n)) { |
---|
152 | bfs.addSource(n); |
---|
153 | while (!bfs.emptyQueue()) { |
---|
154 | compMap.set(bfs.nextNode(), compNum); |
---|
155 | bfs.processNextNode(); |
---|
156 | } |
---|
157 | ++compNum; |
---|
158 | } |
---|
159 | } |
---|
160 | return compNum; |
---|
161 | } |
---|
162 | |
---|
163 | namespace _topology_bits { |
---|
164 | |
---|
165 | template <typename Graph, typename Iterator > |
---|
166 | struct LeaveOrderVisitor : public DfsVisitor<Graph> { |
---|
167 | public: |
---|
168 | typedef typename Graph::Node Node; |
---|
169 | LeaveOrderVisitor(Iterator it) : _it(it) {} |
---|
170 | |
---|
171 | void leave(const Node& node) { |
---|
172 | *(_it++) = node; |
---|
173 | } |
---|
174 | |
---|
175 | private: |
---|
176 | Iterator _it; |
---|
177 | }; |
---|
178 | |
---|
179 | template <typename Graph, typename Map> |
---|
180 | struct FillMapVisitor : public DfsVisitor<Graph> { |
---|
181 | public: |
---|
182 | typedef typename Graph::Node Node; |
---|
183 | typedef typename Map::Value Value; |
---|
184 | |
---|
185 | FillMapVisitor(Map& map, Value& value) |
---|
186 | : _map(map), _value(value) {} |
---|
187 | |
---|
188 | void reach(const Node& node) { |
---|
189 | _map.set(node, _value); |
---|
190 | } |
---|
191 | private: |
---|
192 | Map& _map; |
---|
193 | Value& _value; |
---|
194 | }; |
---|
195 | |
---|
196 | template <typename Graph, typename EdgeMap> |
---|
197 | struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> { |
---|
198 | public: |
---|
199 | typedef typename Graph::Node Node; |
---|
200 | typedef typename Graph::Edge Edge; |
---|
201 | |
---|
202 | StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, |
---|
203 | int& cutNum) |
---|
204 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
---|
205 | _compMap(graph), _num(0) { |
---|
206 | } |
---|
207 | |
---|
208 | void stop(const Node&) { |
---|
209 | ++_num; |
---|
210 | } |
---|
211 | |
---|
212 | void reach(const Node& node) { |
---|
213 | _compMap.set(node, _num); |
---|
214 | } |
---|
215 | |
---|
216 | void examine(const Edge& edge) { |
---|
217 | if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) { |
---|
218 | _cutMap.set(edge, true); |
---|
219 | ++_cutNum; |
---|
220 | } |
---|
221 | } |
---|
222 | private: |
---|
223 | const Graph& _graph; |
---|
224 | EdgeMap& _cutMap; |
---|
225 | int& _cutNum; |
---|
226 | |
---|
227 | typename Graph::template NodeMap<int> _compMap; |
---|
228 | int _num; |
---|
229 | }; |
---|
230 | |
---|
231 | } |
---|
232 | |
---|
233 | |
---|
234 | /// \ingroup topology |
---|
235 | /// |
---|
236 | /// \brief Check that the given directed graph is strongly connected. |
---|
237 | /// |
---|
238 | /// Check that the given directed graph is strongly connected. The |
---|
239 | /// graph is strongly connected when any two nodes of the graph are |
---|
240 | /// connected with directed paths in both direction. |
---|
241 | /// \return %False when the graph is not strongly connected. |
---|
242 | /// \see connected |
---|
243 | /// |
---|
244 | /// \note By definition, the empty graph is strongly connected. |
---|
245 | template <typename Graph> |
---|
246 | bool stronglyConnected(const Graph& graph) { |
---|
247 | checkConcept<concept::Graph, Graph>(); |
---|
248 | |
---|
249 | typedef typename Graph::Node Node; |
---|
250 | typedef typename Graph::NodeIt NodeIt; |
---|
251 | |
---|
252 | if (NodeIt(graph) == INVALID) return true; |
---|
253 | |
---|
254 | using namespace _topology_bits; |
---|
255 | |
---|
256 | typedef DfsVisitor<Graph> Visitor; |
---|
257 | Visitor visitor; |
---|
258 | |
---|
259 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
260 | dfs.init(); |
---|
261 | dfs.addSource(NodeIt(graph)); |
---|
262 | dfs.start(); |
---|
263 | |
---|
264 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
265 | if (!dfs.reached(it)) { |
---|
266 | return false; |
---|
267 | } |
---|
268 | } |
---|
269 | |
---|
270 | typedef RevGraphAdaptor<const Graph> RGraph; |
---|
271 | RGraph rgraph(graph); |
---|
272 | |
---|
273 | typedef DfsVisitor<Graph> RVisitor; |
---|
274 | RVisitor rvisitor; |
---|
275 | |
---|
276 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
277 | rdfs.init(); |
---|
278 | rdfs.addSource(NodeIt(graph)); |
---|
279 | rdfs.start(); |
---|
280 | |
---|
281 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
282 | if (!rdfs.reached(it)) { |
---|
283 | return false; |
---|
284 | } |
---|
285 | } |
---|
286 | |
---|
287 | return true; |
---|
288 | } |
---|
289 | |
---|
290 | /// \ingroup topology |
---|
291 | /// |
---|
292 | /// \brief Count the strongly connected components of a directed graph |
---|
293 | /// |
---|
294 | /// Count the strongly connected components of a directed graph. |
---|
295 | /// The strongly connected components are the classes of an equivalence |
---|
296 | /// relation on the nodes of the graph. Two nodes are connected with |
---|
297 | /// directed paths in both direction. |
---|
298 | /// |
---|
299 | /// \param graph The graph. |
---|
300 | /// \return The number of components |
---|
301 | /// \note By definition, the empty graph has zero |
---|
302 | /// strongly connected components. |
---|
303 | template <typename Graph> |
---|
304 | int countStronglyConnectedComponents(const Graph& graph) { |
---|
305 | checkConcept<concept::Graph, Graph>(); |
---|
306 | |
---|
307 | using namespace _topology_bits; |
---|
308 | |
---|
309 | typedef typename Graph::Node Node; |
---|
310 | typedef typename Graph::Edge Edge; |
---|
311 | typedef typename Graph::NodeIt NodeIt; |
---|
312 | typedef typename Graph::EdgeIt EdgeIt; |
---|
313 | |
---|
314 | typedef std::vector<Node> Container; |
---|
315 | typedef typename Container::iterator Iterator; |
---|
316 | |
---|
317 | Container nodes(countNodes(graph)); |
---|
318 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; |
---|
319 | Visitor visitor(nodes.begin()); |
---|
320 | |
---|
321 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
322 | dfs.init(); |
---|
323 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
324 | if (!dfs.reached(it)) { |
---|
325 | dfs.addSource(it); |
---|
326 | dfs.start(); |
---|
327 | } |
---|
328 | } |
---|
329 | |
---|
330 | typedef typename Container::reverse_iterator RIterator; |
---|
331 | typedef RevGraphAdaptor<const Graph> RGraph; |
---|
332 | |
---|
333 | RGraph rgraph(graph); |
---|
334 | |
---|
335 | typedef DfsVisitor<Graph> RVisitor; |
---|
336 | RVisitor rvisitor; |
---|
337 | |
---|
338 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
339 | |
---|
340 | int compNum = 0; |
---|
341 | |
---|
342 | rdfs.init(); |
---|
343 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
344 | if (!rdfs.reached(*it)) { |
---|
345 | rdfs.addSource(*it); |
---|
346 | rdfs.start(); |
---|
347 | ++compNum; |
---|
348 | } |
---|
349 | } |
---|
350 | return compNum; |
---|
351 | } |
---|
352 | |
---|
353 | /// \ingroup topology |
---|
354 | /// |
---|
355 | /// \brief Find the strongly connected components of a directed graph |
---|
356 | /// |
---|
357 | /// Find the strongly connected components of a directed graph. |
---|
358 | /// The strongly connected components are the classes of an equivalence |
---|
359 | /// relation on the nodes of the graph. Two nodes are in relationship |
---|
360 | /// when there are directed paths between them in both direction. |
---|
361 | /// |
---|
362 | /// \image html strongly_connected_components.png |
---|
363 | /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
---|
364 | /// |
---|
365 | /// \param graph The graph. |
---|
366 | /// \retval compMap A writable node map. The values will be set from 0 to |
---|
367 | /// the number of the strongly connected components minus one. Each values |
---|
368 | /// of the map will be set exactly once, the values of a certain component |
---|
369 | /// will be set continuously. |
---|
370 | /// \return The number of components |
---|
371 | /// |
---|
372 | template <typename Graph, typename NodeMap> |
---|
373 | int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) { |
---|
374 | checkConcept<concept::Graph, Graph>(); |
---|
375 | typedef typename Graph::Node Node; |
---|
376 | typedef typename Graph::NodeIt NodeIt; |
---|
377 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); |
---|
378 | |
---|
379 | using namespace _topology_bits; |
---|
380 | |
---|
381 | typedef std::vector<Node> Container; |
---|
382 | typedef typename Container::iterator Iterator; |
---|
383 | |
---|
384 | Container nodes(countNodes(graph)); |
---|
385 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; |
---|
386 | Visitor visitor(nodes.begin()); |
---|
387 | |
---|
388 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
389 | dfs.init(); |
---|
390 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
391 | if (!dfs.reached(it)) { |
---|
392 | dfs.addSource(it); |
---|
393 | dfs.start(); |
---|
394 | } |
---|
395 | } |
---|
396 | |
---|
397 | typedef typename Container::reverse_iterator RIterator; |
---|
398 | typedef RevGraphAdaptor<const Graph> RGraph; |
---|
399 | |
---|
400 | RGraph rgraph(graph); |
---|
401 | |
---|
402 | int compNum = 0; |
---|
403 | |
---|
404 | typedef FillMapVisitor<RGraph, NodeMap> RVisitor; |
---|
405 | RVisitor rvisitor(compMap, compNum); |
---|
406 | |
---|
407 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
408 | |
---|
409 | rdfs.init(); |
---|
410 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
411 | if (!rdfs.reached(*it)) { |
---|
412 | rdfs.addSource(*it); |
---|
413 | rdfs.start(); |
---|
414 | ++compNum; |
---|
415 | } |
---|
416 | } |
---|
417 | return compNum; |
---|
418 | } |
---|
419 | |
---|
420 | /// \ingroup topology |
---|
421 | /// |
---|
422 | /// \brief Find the cut edges of the strongly connected components. |
---|
423 | /// |
---|
424 | /// Find the cut edges of the strongly connected components. |
---|
425 | /// The strongly connected components are the classes of an equivalence |
---|
426 | /// relation on the nodes of the graph. Two nodes are in relationship |
---|
427 | /// when there are directed paths between them in both direction. |
---|
428 | /// The strongly connected components are separated by the cut edges. |
---|
429 | /// |
---|
430 | /// \param graph The graph. |
---|
431 | /// \retval cutMap A writable node map. The values will be set true when the |
---|
432 | /// edge is a cut edge. |
---|
433 | /// |
---|
434 | /// \return The number of cut edges |
---|
435 | template <typename Graph, typename EdgeMap> |
---|
436 | int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
---|
437 | checkConcept<concept::Graph, Graph>(); |
---|
438 | typedef typename Graph::Node Node; |
---|
439 | typedef typename Graph::Edge Edge; |
---|
440 | typedef typename Graph::NodeIt NodeIt; |
---|
441 | checkConcept<concept::WriteMap<Edge, bool>, EdgeMap>(); |
---|
442 | |
---|
443 | using namespace _topology_bits; |
---|
444 | |
---|
445 | typedef std::vector<Node> Container; |
---|
446 | typedef typename Container::iterator Iterator; |
---|
447 | |
---|
448 | Container nodes(countNodes(graph)); |
---|
449 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; |
---|
450 | Visitor visitor(nodes.begin()); |
---|
451 | |
---|
452 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
453 | dfs.init(); |
---|
454 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
455 | if (!dfs.reached(it)) { |
---|
456 | dfs.addSource(it); |
---|
457 | dfs.start(); |
---|
458 | } |
---|
459 | } |
---|
460 | |
---|
461 | typedef typename Container::reverse_iterator RIterator; |
---|
462 | typedef RevGraphAdaptor<const Graph> RGraph; |
---|
463 | |
---|
464 | RGraph rgraph(graph); |
---|
465 | |
---|
466 | int cutNum = 0; |
---|
467 | |
---|
468 | typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor; |
---|
469 | RVisitor rvisitor(rgraph, cutMap, cutNum); |
---|
470 | |
---|
471 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
472 | |
---|
473 | rdfs.init(); |
---|
474 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
475 | if (!rdfs.reached(*it)) { |
---|
476 | rdfs.addSource(*it); |
---|
477 | rdfs.start(); |
---|
478 | } |
---|
479 | } |
---|
480 | return cutNum; |
---|
481 | } |
---|
482 | |
---|
483 | namespace _topology_bits { |
---|
484 | |
---|
485 | template <typename Graph> |
---|
486 | class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> { |
---|
487 | public: |
---|
488 | typedef typename Graph::Node Node; |
---|
489 | typedef typename Graph::Edge Edge; |
---|
490 | typedef typename Graph::UEdge UEdge; |
---|
491 | |
---|
492 | CountBiNodeConnectedComponentsVisitor(const Graph& graph, int &compNum) |
---|
493 | : _graph(graph), _compNum(compNum), |
---|
494 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
495 | |
---|
496 | void start(const Node& node) { |
---|
497 | _predMap.set(node, INVALID); |
---|
498 | } |
---|
499 | |
---|
500 | void reach(const Node& node) { |
---|
501 | _numMap.set(node, _num); |
---|
502 | _retMap.set(node, _num); |
---|
503 | ++_num; |
---|
504 | } |
---|
505 | |
---|
506 | void discover(const Edge& edge) { |
---|
507 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
---|
508 | } |
---|
509 | |
---|
510 | void examine(const Edge& edge) { |
---|
511 | if (_graph.source(edge) == _graph.target(edge) && |
---|
512 | _graph.direction(edge)) { |
---|
513 | ++_compNum; |
---|
514 | return; |
---|
515 | } |
---|
516 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) { |
---|
517 | return; |
---|
518 | } |
---|
519 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
---|
520 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
---|
521 | } |
---|
522 | } |
---|
523 | |
---|
524 | void backtrack(const Edge& edge) { |
---|
525 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
526 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
527 | } |
---|
528 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
---|
529 | ++_compNum; |
---|
530 | } |
---|
531 | } |
---|
532 | |
---|
533 | private: |
---|
534 | const Graph& _graph; |
---|
535 | int& _compNum; |
---|
536 | |
---|
537 | typename Graph::template NodeMap<int> _numMap; |
---|
538 | typename Graph::template NodeMap<int> _retMap; |
---|
539 | typename Graph::template NodeMap<Node> _predMap; |
---|
540 | int _num; |
---|
541 | }; |
---|
542 | |
---|
543 | template <typename Graph, typename EdgeMap> |
---|
544 | class BiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> { |
---|
545 | public: |
---|
546 | typedef typename Graph::Node Node; |
---|
547 | typedef typename Graph::Edge Edge; |
---|
548 | typedef typename Graph::UEdge UEdge; |
---|
549 | |
---|
550 | BiNodeConnectedComponentsVisitor(const Graph& graph, |
---|
551 | EdgeMap& compMap, int &compNum) |
---|
552 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
---|
553 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
554 | |
---|
555 | void start(const Node& node) { |
---|
556 | _predMap.set(node, INVALID); |
---|
557 | } |
---|
558 | |
---|
559 | void reach(const Node& node) { |
---|
560 | _numMap.set(node, _num); |
---|
561 | _retMap.set(node, _num); |
---|
562 | ++_num; |
---|
563 | } |
---|
564 | |
---|
565 | void discover(const Edge& edge) { |
---|
566 | Node target = _graph.target(edge); |
---|
567 | _predMap.set(target, edge); |
---|
568 | _edgeStack.push(edge); |
---|
569 | } |
---|
570 | |
---|
571 | void examine(const Edge& edge) { |
---|
572 | Node source = _graph.source(edge); |
---|
573 | Node target = _graph.target(edge); |
---|
574 | if (source == target && _graph.direction(edge)) { |
---|
575 | _compMap.set(edge, _compNum); |
---|
576 | ++_compNum; |
---|
577 | return; |
---|
578 | } |
---|
579 | if (_numMap[target] < _numMap[source]) { |
---|
580 | if (_predMap[source] != _graph.oppositeEdge(edge)) { |
---|
581 | _edgeStack.push(edge); |
---|
582 | } |
---|
583 | } |
---|
584 | if (_predMap[source] != INVALID && |
---|
585 | target == _graph.source(_predMap[source])) { |
---|
586 | return; |
---|
587 | } |
---|
588 | if (_retMap[source] > _numMap[target]) { |
---|
589 | _retMap.set(source, _numMap[target]); |
---|
590 | } |
---|
591 | } |
---|
592 | |
---|
593 | void backtrack(const Edge& edge) { |
---|
594 | Node source = _graph.source(edge); |
---|
595 | Node target = _graph.target(edge); |
---|
596 | if (_retMap[source] > _retMap[target]) { |
---|
597 | _retMap.set(source, _retMap[target]); |
---|
598 | } |
---|
599 | if (_numMap[source] <= _retMap[target]) { |
---|
600 | while (_edgeStack.top() != edge) { |
---|
601 | _compMap.set(_edgeStack.top(), _compNum); |
---|
602 | _edgeStack.pop(); |
---|
603 | } |
---|
604 | _compMap.set(edge, _compNum); |
---|
605 | _edgeStack.pop(); |
---|
606 | ++_compNum; |
---|
607 | } |
---|
608 | } |
---|
609 | |
---|
610 | private: |
---|
611 | const Graph& _graph; |
---|
612 | EdgeMap& _compMap; |
---|
613 | int& _compNum; |
---|
614 | |
---|
615 | typename Graph::template NodeMap<int> _numMap; |
---|
616 | typename Graph::template NodeMap<int> _retMap; |
---|
617 | typename Graph::template NodeMap<Edge> _predMap; |
---|
618 | std::stack<UEdge> _edgeStack; |
---|
619 | int _num; |
---|
620 | }; |
---|
621 | |
---|
622 | |
---|
623 | template <typename Graph, typename NodeMap> |
---|
624 | class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Graph> { |
---|
625 | public: |
---|
626 | typedef typename Graph::Node Node; |
---|
627 | typedef typename Graph::Edge Edge; |
---|
628 | typedef typename Graph::UEdge UEdge; |
---|
629 | |
---|
630 | BiNodeConnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap, |
---|
631 | int& cutNum) |
---|
632 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
---|
633 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
634 | |
---|
635 | void start(const Node& node) { |
---|
636 | _predMap.set(node, INVALID); |
---|
637 | rootCut = false; |
---|
638 | } |
---|
639 | |
---|
640 | void reach(const Node& node) { |
---|
641 | _numMap.set(node, _num); |
---|
642 | _retMap.set(node, _num); |
---|
643 | ++_num; |
---|
644 | } |
---|
645 | |
---|
646 | void discover(const Edge& edge) { |
---|
647 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
---|
648 | } |
---|
649 | |
---|
650 | void examine(const Edge& edge) { |
---|
651 | if (_graph.source(edge) == _graph.target(edge) && |
---|
652 | _graph.direction(edge)) { |
---|
653 | if (!_cutMap[_graph.source(edge)]) { |
---|
654 | _cutMap.set(_graph.source(edge), true); |
---|
655 | ++_cutNum; |
---|
656 | } |
---|
657 | return; |
---|
658 | } |
---|
659 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
---|
660 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
---|
661 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
---|
662 | } |
---|
663 | } |
---|
664 | |
---|
665 | void backtrack(const Edge& edge) { |
---|
666 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
667 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
668 | } |
---|
669 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
---|
670 | if (_predMap[_graph.source(edge)] != INVALID) { |
---|
671 | if (!_cutMap[_graph.source(edge)]) { |
---|
672 | _cutMap.set(_graph.source(edge), true); |
---|
673 | ++_cutNum; |
---|
674 | } |
---|
675 | } else if (rootCut) { |
---|
676 | if (!_cutMap[_graph.source(edge)]) { |
---|
677 | _cutMap.set(_graph.source(edge), true); |
---|
678 | ++_cutNum; |
---|
679 | } |
---|
680 | } else { |
---|
681 | rootCut = true; |
---|
682 | } |
---|
683 | } |
---|
684 | } |
---|
685 | |
---|
686 | private: |
---|
687 | const Graph& _graph; |
---|
688 | NodeMap& _cutMap; |
---|
689 | int& _cutNum; |
---|
690 | |
---|
691 | typename Graph::template NodeMap<int> _numMap; |
---|
692 | typename Graph::template NodeMap<int> _retMap; |
---|
693 | typename Graph::template NodeMap<Node> _predMap; |
---|
694 | std::stack<UEdge> _edgeStack; |
---|
695 | int _num; |
---|
696 | bool rootCut; |
---|
697 | }; |
---|
698 | |
---|
699 | } |
---|
700 | |
---|
701 | template <typename UGraph> |
---|
702 | int countBiNodeConnectedComponents(const UGraph& graph); |
---|
703 | |
---|
704 | /// \ingroup topology |
---|
705 | /// |
---|
706 | /// \brief Checks the graph is bi-node-connected. |
---|
707 | /// |
---|
708 | /// This function checks that the undirected graph is bi-node-connected |
---|
709 | /// graph. The graph is bi-node-connected if any two undirected edge is |
---|
710 | /// on same circle. |
---|
711 | /// |
---|
712 | /// \param graph The graph. |
---|
713 | /// \return %True when the graph bi-node-connected. |
---|
714 | /// \todo Make it faster. |
---|
715 | template <typename UGraph> |
---|
716 | bool biNodeConnected(const UGraph& graph) { |
---|
717 | return countBiNodeConnectedComponents(graph) == 1; |
---|
718 | } |
---|
719 | |
---|
720 | /// \ingroup topology |
---|
721 | /// |
---|
722 | /// \brief Count the biconnected components. |
---|
723 | /// |
---|
724 | /// This function finds the bi-node-connected components in an undirected |
---|
725 | /// graph. The biconnected components are the classes of an equivalence |
---|
726 | /// relation on the undirected edges. Two undirected edge is in relationship |
---|
727 | /// when they are on same circle. |
---|
728 | /// |
---|
729 | /// \param graph The graph. |
---|
730 | /// \return The number of components. |
---|
731 | template <typename UGraph> |
---|
732 | int countBiNodeConnectedComponents(const UGraph& graph) { |
---|
733 | checkConcept<concept::UGraph, UGraph>(); |
---|
734 | typedef typename UGraph::NodeIt NodeIt; |
---|
735 | |
---|
736 | using namespace _topology_bits; |
---|
737 | |
---|
738 | typedef CountBiNodeConnectedComponentsVisitor<UGraph> Visitor; |
---|
739 | |
---|
740 | int compNum = 0; |
---|
741 | Visitor visitor(graph, compNum); |
---|
742 | |
---|
743 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); |
---|
744 | dfs.init(); |
---|
745 | |
---|
746 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
747 | if (!dfs.reached(it)) { |
---|
748 | dfs.addSource(it); |
---|
749 | dfs.start(); |
---|
750 | } |
---|
751 | } |
---|
752 | return compNum; |
---|
753 | } |
---|
754 | |
---|
755 | /// \ingroup topology |
---|
756 | /// |
---|
757 | /// \brief Find the bi-node-connected components. |
---|
758 | /// |
---|
759 | /// This function finds the bi-node-connected components in an undirected |
---|
760 | /// graph. The bi-node-connected components are the classes of an equivalence |
---|
761 | /// relation on the undirected edges. Two undirected edge are in relationship |
---|
762 | /// when they are on same circle. |
---|
763 | /// |
---|
764 | /// \image html node_biconnected_components.png |
---|
765 | /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
---|
766 | /// |
---|
767 | /// \param graph The graph. |
---|
768 | /// \retval compMap A writable uedge map. The values will be set from 0 |
---|
769 | /// to the number of the biconnected components minus one. Each values |
---|
770 | /// of the map will be set exactly once, the values of a certain component |
---|
771 | /// will be set continuously. |
---|
772 | /// \return The number of components. |
---|
773 | /// |
---|
774 | template <typename UGraph, typename UEdgeMap> |
---|
775 | int biNodeConnectedComponents(const UGraph& graph, |
---|
776 | UEdgeMap& compMap) { |
---|
777 | checkConcept<concept::UGraph, UGraph>(); |
---|
778 | typedef typename UGraph::NodeIt NodeIt; |
---|
779 | typedef typename UGraph::UEdge UEdge; |
---|
780 | checkConcept<concept::WriteMap<UEdge, int>, UEdgeMap>(); |
---|
781 | |
---|
782 | using namespace _topology_bits; |
---|
783 | |
---|
784 | typedef BiNodeConnectedComponentsVisitor<UGraph, UEdgeMap> Visitor; |
---|
785 | |
---|
786 | int compNum = 0; |
---|
787 | Visitor visitor(graph, compMap, compNum); |
---|
788 | |
---|
789 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); |
---|
790 | dfs.init(); |
---|
791 | |
---|
792 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
793 | if (!dfs.reached(it)) { |
---|
794 | dfs.addSource(it); |
---|
795 | dfs.start(); |
---|
796 | } |
---|
797 | } |
---|
798 | return compNum; |
---|
799 | } |
---|
800 | |
---|
801 | /// \ingroup topology |
---|
802 | /// |
---|
803 | /// \brief Find the bi-node-connected cut nodes. |
---|
804 | /// |
---|
805 | /// This function finds the bi-node-connected cut nodes in an undirected |
---|
806 | /// graph. The bi-node-connected components are the classes of an equivalence |
---|
807 | /// relation on the undirected edges. Two undirected edges are in |
---|
808 | /// relationship when they are on same circle. The biconnected components |
---|
809 | /// are separted by nodes which are the cut nodes of the components. |
---|
810 | /// |
---|
811 | /// \param graph The graph. |
---|
812 | /// \retval cutMap A writable edge map. The values will be set true when |
---|
813 | /// the node separate two or more components. |
---|
814 | /// \return The number of the cut nodes. |
---|
815 | template <typename UGraph, typename NodeMap> |
---|
816 | int biNodeConnectedCutNodes(const UGraph& graph, NodeMap& cutMap) { |
---|
817 | checkConcept<concept::UGraph, UGraph>(); |
---|
818 | typedef typename UGraph::Node Node; |
---|
819 | typedef typename UGraph::NodeIt NodeIt; |
---|
820 | checkConcept<concept::WriteMap<Node, bool>, NodeMap>(); |
---|
821 | |
---|
822 | using namespace _topology_bits; |
---|
823 | |
---|
824 | typedef BiNodeConnectedCutNodesVisitor<UGraph, NodeMap> Visitor; |
---|
825 | |
---|
826 | int cutNum = 0; |
---|
827 | Visitor visitor(graph, cutMap, cutNum); |
---|
828 | |
---|
829 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); |
---|
830 | dfs.init(); |
---|
831 | |
---|
832 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
833 | if (!dfs.reached(it)) { |
---|
834 | dfs.addSource(it); |
---|
835 | dfs.start(); |
---|
836 | } |
---|
837 | } |
---|
838 | return cutNum; |
---|
839 | } |
---|
840 | |
---|
841 | namespace _topology_bits { |
---|
842 | |
---|
843 | template <typename Graph> |
---|
844 | class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> { |
---|
845 | public: |
---|
846 | typedef typename Graph::Node Node; |
---|
847 | typedef typename Graph::Edge Edge; |
---|
848 | typedef typename Graph::UEdge UEdge; |
---|
849 | |
---|
850 | CountBiEdgeConnectedComponentsVisitor(const Graph& graph, int &compNum) |
---|
851 | : _graph(graph), _compNum(compNum), |
---|
852 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
853 | |
---|
854 | void start(const Node& node) { |
---|
855 | _predMap.set(node, INVALID); |
---|
856 | } |
---|
857 | |
---|
858 | void reach(const Node& node) { |
---|
859 | _numMap.set(node, _num); |
---|
860 | _retMap.set(node, _num); |
---|
861 | ++_num; |
---|
862 | } |
---|
863 | |
---|
864 | void leave(const Node& node) { |
---|
865 | if (_numMap[node] <= _retMap[node]) { |
---|
866 | ++_compNum; |
---|
867 | } |
---|
868 | } |
---|
869 | |
---|
870 | void discover(const Edge& edge) { |
---|
871 | _predMap.set(_graph.target(edge), edge); |
---|
872 | } |
---|
873 | |
---|
874 | void examine(const Edge& edge) { |
---|
875 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { |
---|
876 | return; |
---|
877 | } |
---|
878 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
879 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
880 | } |
---|
881 | } |
---|
882 | |
---|
883 | void backtrack(const Edge& edge) { |
---|
884 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
885 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
886 | } |
---|
887 | } |
---|
888 | |
---|
889 | private: |
---|
890 | const Graph& _graph; |
---|
891 | int& _compNum; |
---|
892 | |
---|
893 | typename Graph::template NodeMap<int> _numMap; |
---|
894 | typename Graph::template NodeMap<int> _retMap; |
---|
895 | typename Graph::template NodeMap<Edge> _predMap; |
---|
896 | int _num; |
---|
897 | }; |
---|
898 | |
---|
899 | template <typename Graph, typename NodeMap> |
---|
900 | class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> { |
---|
901 | public: |
---|
902 | typedef typename Graph::Node Node; |
---|
903 | typedef typename Graph::Edge Edge; |
---|
904 | typedef typename Graph::UEdge UEdge; |
---|
905 | |
---|
906 | BiEdgeConnectedComponentsVisitor(const Graph& graph, |
---|
907 | NodeMap& compMap, int &compNum) |
---|
908 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
---|
909 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
910 | |
---|
911 | void start(const Node& node) { |
---|
912 | _predMap.set(node, INVALID); |
---|
913 | } |
---|
914 | |
---|
915 | void reach(const Node& node) { |
---|
916 | _numMap.set(node, _num); |
---|
917 | _retMap.set(node, _num); |
---|
918 | _nodeStack.push(node); |
---|
919 | ++_num; |
---|
920 | } |
---|
921 | |
---|
922 | void leave(const Node& node) { |
---|
923 | if (_numMap[node] <= _retMap[node]) { |
---|
924 | while (_nodeStack.top() != node) { |
---|
925 | _compMap.set(_nodeStack.top(), _compNum); |
---|
926 | _nodeStack.pop(); |
---|
927 | } |
---|
928 | _compMap.set(node, _compNum); |
---|
929 | _nodeStack.pop(); |
---|
930 | ++_compNum; |
---|
931 | } |
---|
932 | } |
---|
933 | |
---|
934 | void discover(const Edge& edge) { |
---|
935 | _predMap.set(_graph.target(edge), edge); |
---|
936 | } |
---|
937 | |
---|
938 | void examine(const Edge& edge) { |
---|
939 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { |
---|
940 | return; |
---|
941 | } |
---|
942 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
943 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
944 | } |
---|
945 | } |
---|
946 | |
---|
947 | void backtrack(const Edge& edge) { |
---|
948 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
949 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
950 | } |
---|
951 | } |
---|
952 | |
---|
953 | private: |
---|
954 | const Graph& _graph; |
---|
955 | NodeMap& _compMap; |
---|
956 | int& _compNum; |
---|
957 | |
---|
958 | typename Graph::template NodeMap<int> _numMap; |
---|
959 | typename Graph::template NodeMap<int> _retMap; |
---|
960 | typename Graph::template NodeMap<Edge> _predMap; |
---|
961 | std::stack<Node> _nodeStack; |
---|
962 | int _num; |
---|
963 | }; |
---|
964 | |
---|
965 | |
---|
966 | template <typename Graph, typename EdgeMap> |
---|
967 | class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Graph> { |
---|
968 | public: |
---|
969 | typedef typename Graph::Node Node; |
---|
970 | typedef typename Graph::Edge Edge; |
---|
971 | typedef typename Graph::UEdge UEdge; |
---|
972 | |
---|
973 | BiEdgeConnectedCutEdgesVisitor(const Graph& graph, |
---|
974 | EdgeMap& cutMap, int &cutNum) |
---|
975 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
---|
976 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
977 | |
---|
978 | void start(const Node& node) { |
---|
979 | _predMap[node] = INVALID; |
---|
980 | } |
---|
981 | |
---|
982 | void reach(const Node& node) { |
---|
983 | _numMap.set(node, _num); |
---|
984 | _retMap.set(node, _num); |
---|
985 | ++_num; |
---|
986 | } |
---|
987 | |
---|
988 | void leave(const Node& node) { |
---|
989 | if (_numMap[node] <= _retMap[node]) { |
---|
990 | if (_predMap[node] != INVALID) { |
---|
991 | _cutMap.set(_predMap[node], true); |
---|
992 | ++_cutNum; |
---|
993 | } |
---|
994 | } |
---|
995 | } |
---|
996 | |
---|
997 | void discover(const Edge& edge) { |
---|
998 | _predMap.set(_graph.target(edge), edge); |
---|
999 | } |
---|
1000 | |
---|
1001 | void examine(const Edge& edge) { |
---|
1002 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { |
---|
1003 | return; |
---|
1004 | } |
---|
1005 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
1006 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
1007 | } |
---|
1008 | } |
---|
1009 | |
---|
1010 | void backtrack(const Edge& edge) { |
---|
1011 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
1012 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
1013 | } |
---|
1014 | } |
---|
1015 | |
---|
1016 | private: |
---|
1017 | const Graph& _graph; |
---|
1018 | EdgeMap& _cutMap; |
---|
1019 | int& _cutNum; |
---|
1020 | |
---|
1021 | typename Graph::template NodeMap<int> _numMap; |
---|
1022 | typename Graph::template NodeMap<int> _retMap; |
---|
1023 | typename Graph::template NodeMap<Edge> _predMap; |
---|
1024 | int _num; |
---|
1025 | }; |
---|
1026 | } |
---|
1027 | |
---|
1028 | template <typename UGraph> |
---|
1029 | int countbiEdgeConnectedComponents(const UGraph& graph); |
---|
1030 | |
---|
1031 | /// \ingroup topology |
---|
1032 | /// |
---|
1033 | /// \brief Checks that the graph is bi-edge-connected. |
---|
1034 | /// |
---|
1035 | /// This function checks that the graph is bi-edge-connected. The undirected |
---|
1036 | /// graph is bi-edge-connected when any two nodes are connected with two |
---|
1037 | /// edge-disjoint paths. |
---|
1038 | /// |
---|
1039 | /// \param graph The undirected graph. |
---|
1040 | /// \return The number of components. |
---|
1041 | /// \todo Make it faster. |
---|
1042 | template <typename UGraph> |
---|
1043 | bool biEdgeConnected(const UGraph& graph) { |
---|
1044 | return countBiEdgeConnectedComponents(graph) == 1; |
---|
1045 | } |
---|
1046 | |
---|
1047 | /// \ingroup topology |
---|
1048 | /// |
---|
1049 | /// \brief Count the bi-edge-connected components. |
---|
1050 | /// |
---|
1051 | /// This function count the bi-edge-connected components in an undirected |
---|
1052 | /// graph. The bi-edge-connected components are the classes of an equivalence |
---|
1053 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1054 | /// connected with at least two edge-disjoint paths. |
---|
1055 | /// |
---|
1056 | /// \param graph The undirected graph. |
---|
1057 | /// \return The number of components. |
---|
1058 | template <typename UGraph> |
---|
1059 | int countBiEdgeConnectedComponents(const UGraph& graph) { |
---|
1060 | checkConcept<concept::UGraph, UGraph>(); |
---|
1061 | typedef typename UGraph::NodeIt NodeIt; |
---|
1062 | |
---|
1063 | using namespace _topology_bits; |
---|
1064 | |
---|
1065 | typedef CountBiEdgeConnectedComponentsVisitor<UGraph> Visitor; |
---|
1066 | |
---|
1067 | int compNum = 0; |
---|
1068 | Visitor visitor(graph, compNum); |
---|
1069 | |
---|
1070 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); |
---|
1071 | dfs.init(); |
---|
1072 | |
---|
1073 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1074 | if (!dfs.reached(it)) { |
---|
1075 | dfs.addSource(it); |
---|
1076 | dfs.start(); |
---|
1077 | } |
---|
1078 | } |
---|
1079 | return compNum; |
---|
1080 | } |
---|
1081 | |
---|
1082 | /// \ingroup topology |
---|
1083 | /// |
---|
1084 | /// \brief Find the bi-edge-connected components. |
---|
1085 | /// |
---|
1086 | /// This function finds the bi-edge-connected components in an undirected |
---|
1087 | /// graph. The bi-edge-connected components are the classes of an equivalence |
---|
1088 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1089 | /// connected at least two edge-disjoint paths. |
---|
1090 | /// |
---|
1091 | /// \image html edge_biconnected_components.png |
---|
1092 | /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
---|
1093 | /// |
---|
1094 | /// \param graph The graph. |
---|
1095 | /// \retval compMap A writable node map. The values will be set from 0 to |
---|
1096 | /// the number of the biconnected components minus one. Each values |
---|
1097 | /// of the map will be set exactly once, the values of a certain component |
---|
1098 | /// will be set continuously. |
---|
1099 | /// \return The number of components. |
---|
1100 | /// |
---|
1101 | template <typename UGraph, typename NodeMap> |
---|
1102 | int biEdgeConnectedComponents(const UGraph& graph, NodeMap& compMap) { |
---|
1103 | checkConcept<concept::UGraph, UGraph>(); |
---|
1104 | typedef typename UGraph::NodeIt NodeIt; |
---|
1105 | typedef typename UGraph::Node Node; |
---|
1106 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); |
---|
1107 | |
---|
1108 | using namespace _topology_bits; |
---|
1109 | |
---|
1110 | typedef BiEdgeConnectedComponentsVisitor<UGraph, NodeMap> Visitor; |
---|
1111 | |
---|
1112 | int compNum = 0; |
---|
1113 | Visitor visitor(graph, compMap, compNum); |
---|
1114 | |
---|
1115 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); |
---|
1116 | dfs.init(); |
---|
1117 | |
---|
1118 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1119 | if (!dfs.reached(it)) { |
---|
1120 | dfs.addSource(it); |
---|
1121 | dfs.start(); |
---|
1122 | } |
---|
1123 | } |
---|
1124 | return compNum; |
---|
1125 | } |
---|
1126 | |
---|
1127 | /// \ingroup topology |
---|
1128 | /// |
---|
1129 | /// \brief Find the bi-edge-connected cut edges. |
---|
1130 | /// |
---|
1131 | /// This function finds the bi-edge-connected components in an undirected |
---|
1132 | /// graph. The bi-edge-connected components are the classes of an equivalence |
---|
1133 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1134 | /// connected with at least two edge-disjoint paths. The bi-edge-connected |
---|
1135 | /// components are separted by edges which are the cut edges of the |
---|
1136 | /// components. |
---|
1137 | /// |
---|
1138 | /// \param graph The graph. |
---|
1139 | /// \retval cutMap A writable node map. The values will be set true when the |
---|
1140 | /// edge is a cut edge. |
---|
1141 | /// \return The number of cut edges. |
---|
1142 | template <typename UGraph, typename UEdgeMap> |
---|
1143 | int biEdgeConnectedCutEdges(const UGraph& graph, UEdgeMap& cutMap) { |
---|
1144 | checkConcept<concept::UGraph, UGraph>(); |
---|
1145 | typedef typename UGraph::NodeIt NodeIt; |
---|
1146 | typedef typename UGraph::UEdge UEdge; |
---|
1147 | checkConcept<concept::WriteMap<UEdge, bool>, UEdgeMap>(); |
---|
1148 | |
---|
1149 | using namespace _topology_bits; |
---|
1150 | |
---|
1151 | typedef BiEdgeConnectedCutEdgesVisitor<UGraph, UEdgeMap> Visitor; |
---|
1152 | |
---|
1153 | int cutNum = 0; |
---|
1154 | Visitor visitor(graph, cutMap, cutNum); |
---|
1155 | |
---|
1156 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); |
---|
1157 | dfs.init(); |
---|
1158 | |
---|
1159 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1160 | if (!dfs.reached(it)) { |
---|
1161 | dfs.addSource(it); |
---|
1162 | dfs.start(); |
---|
1163 | } |
---|
1164 | } |
---|
1165 | return cutNum; |
---|
1166 | } |
---|
1167 | |
---|
1168 | |
---|
1169 | namespace _topology_bits { |
---|
1170 | |
---|
1171 | template <typename Graph, typename IntNodeMap> |
---|
1172 | class TopologicalSortVisitor : public DfsVisitor<Graph> { |
---|
1173 | public: |
---|
1174 | typedef typename Graph::Node Node; |
---|
1175 | typedef typename Graph::Edge edge; |
---|
1176 | |
---|
1177 | TopologicalSortVisitor(IntNodeMap& order, int num) |
---|
1178 | : _order(order), _num(num) {} |
---|
1179 | |
---|
1180 | void leave(const Node& node) { |
---|
1181 | _order.set(node, --_num); |
---|
1182 | } |
---|
1183 | |
---|
1184 | private: |
---|
1185 | IntNodeMap& _order; |
---|
1186 | int _num; |
---|
1187 | }; |
---|
1188 | |
---|
1189 | } |
---|
1190 | |
---|
1191 | /// \ingroup topology |
---|
1192 | /// |
---|
1193 | /// \brief Sort the nodes of a DAG into topolgical order. |
---|
1194 | /// |
---|
1195 | /// Sort the nodes of a DAG into topolgical order. |
---|
1196 | /// |
---|
1197 | /// \param graph The graph. It should be directed and acyclic. |
---|
1198 | /// \retval order A writable node map. The values will be set from 0 to |
---|
1199 | /// the number of the nodes in the graph minus one. Each values of the map |
---|
1200 | /// will be set exactly once, the values will be set descending order. |
---|
1201 | /// |
---|
1202 | /// \see checkedTopologicalSort |
---|
1203 | /// \see dag |
---|
1204 | template <typename Graph, typename NodeMap> |
---|
1205 | void topologicalSort(const Graph& graph, NodeMap& order) { |
---|
1206 | using namespace _topology_bits; |
---|
1207 | |
---|
1208 | checkConcept<concept::Graph, Graph>(); |
---|
1209 | checkConcept<concept::WriteMap<typename Graph::Node, int>, NodeMap>(); |
---|
1210 | |
---|
1211 | typedef typename Graph::Node Node; |
---|
1212 | typedef typename Graph::NodeIt NodeIt; |
---|
1213 | typedef typename Graph::Edge Edge; |
---|
1214 | |
---|
1215 | TopologicalSortVisitor<Graph, NodeMap> |
---|
1216 | visitor(order, countNodes(graph)); |
---|
1217 | |
---|
1218 | DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> > |
---|
1219 | dfs(graph, visitor); |
---|
1220 | |
---|
1221 | dfs.init(); |
---|
1222 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1223 | if (!dfs.reached(it)) { |
---|
1224 | dfs.addSource(it); |
---|
1225 | dfs.start(); |
---|
1226 | } |
---|
1227 | } |
---|
1228 | } |
---|
1229 | |
---|
1230 | /// \ingroup topology |
---|
1231 | /// |
---|
1232 | /// \brief Sort the nodes of a DAG into topolgical order. |
---|
1233 | /// |
---|
1234 | /// Sort the nodes of a DAG into topolgical order. It also checks |
---|
1235 | /// that the given graph is DAG. |
---|
1236 | /// |
---|
1237 | /// \param graph The graph. It should be directed and acyclic. |
---|
1238 | /// \retval order A readable - writable node map. The values will be set |
---|
1239 | /// from 0 to the number of the nodes in the graph minus one. Each values |
---|
1240 | /// of the map will be set exactly once, the values will be set descending |
---|
1241 | /// order. |
---|
1242 | /// \return %False when the graph is not DAG. |
---|
1243 | /// |
---|
1244 | /// \see topologicalSort |
---|
1245 | /// \see dag |
---|
1246 | template <typename Graph, typename NodeMap> |
---|
1247 | bool checkedTopologicalSort(const Graph& graph, NodeMap& order) { |
---|
1248 | using namespace _topology_bits; |
---|
1249 | |
---|
1250 | checkConcept<concept::Graph, Graph>(); |
---|
1251 | checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>(); |
---|
1252 | |
---|
1253 | typedef typename Graph::Node Node; |
---|
1254 | typedef typename Graph::NodeIt NodeIt; |
---|
1255 | typedef typename Graph::Edge Edge; |
---|
1256 | |
---|
1257 | order = constMap<Node, int, -1>(); |
---|
1258 | |
---|
1259 | TopologicalSortVisitor<Graph, NodeMap> |
---|
1260 | visitor(order, countNodes(graph)); |
---|
1261 | |
---|
1262 | DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> > |
---|
1263 | dfs(graph, visitor); |
---|
1264 | |
---|
1265 | dfs.init(); |
---|
1266 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1267 | if (!dfs.reached(it)) { |
---|
1268 | dfs.addSource(it); |
---|
1269 | while (!dfs.emptyQueue()) { |
---|
1270 | Edge edge = dfs.nextEdge(); |
---|
1271 | Node target = graph.target(edge); |
---|
1272 | if (dfs.reached(target) && order[target] == -1) { |
---|
1273 | return false; |
---|
1274 | } |
---|
1275 | dfs.processNextEdge(); |
---|
1276 | } |
---|
1277 | } |
---|
1278 | } |
---|
1279 | return true; |
---|
1280 | } |
---|
1281 | |
---|
1282 | /// \ingroup topology |
---|
1283 | /// |
---|
1284 | /// \brief Check that the given directed graph is a DAG. |
---|
1285 | /// |
---|
1286 | /// Check that the given directed graph is a DAG. The DAG is |
---|
1287 | /// an Directed Acyclic Graph. |
---|
1288 | /// \return %False when the graph is not DAG. |
---|
1289 | /// \see acyclic |
---|
1290 | template <typename Graph> |
---|
1291 | bool dag(const Graph& graph) { |
---|
1292 | |
---|
1293 | checkConcept<concept::Graph, Graph>(); |
---|
1294 | |
---|
1295 | typedef typename Graph::Node Node; |
---|
1296 | typedef typename Graph::NodeIt NodeIt; |
---|
1297 | typedef typename Graph::Edge Edge; |
---|
1298 | |
---|
1299 | typedef typename Graph::template NodeMap<bool> ProcessedMap; |
---|
1300 | |
---|
1301 | typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>:: |
---|
1302 | Create dfs(graph); |
---|
1303 | |
---|
1304 | ProcessedMap processed(graph); |
---|
1305 | dfs.processedMap(processed); |
---|
1306 | |
---|
1307 | dfs.init(); |
---|
1308 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1309 | if (!dfs.reached(it)) { |
---|
1310 | dfs.addSource(it); |
---|
1311 | while (!dfs.emptyQueue()) { |
---|
1312 | Edge edge = dfs.nextEdge(); |
---|
1313 | Node target = graph.target(edge); |
---|
1314 | if (dfs.reached(target) && !processed[target]) { |
---|
1315 | return false; |
---|
1316 | } |
---|
1317 | dfs.processNextEdge(); |
---|
1318 | } |
---|
1319 | } |
---|
1320 | } |
---|
1321 | return true; |
---|
1322 | } |
---|
1323 | |
---|
1324 | /// \ingroup topology |
---|
1325 | /// |
---|
1326 | /// \brief Check that the given undirected graph is acyclic. |
---|
1327 | /// |
---|
1328 | /// Check that the given undirected graph acyclic. |
---|
1329 | /// \param graph The undirected graph. |
---|
1330 | /// \return %True when there is no circle in the graph. |
---|
1331 | /// \see dag |
---|
1332 | template <typename UGraph> |
---|
1333 | bool acyclic(const UGraph& graph) { |
---|
1334 | checkConcept<concept::UGraph, UGraph>(); |
---|
1335 | typedef typename UGraph::Node Node; |
---|
1336 | typedef typename UGraph::NodeIt NodeIt; |
---|
1337 | typedef typename UGraph::Edge Edge; |
---|
1338 | Dfs<UGraph> dfs(graph); |
---|
1339 | dfs.init(); |
---|
1340 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1341 | if (!dfs.reached(it)) { |
---|
1342 | dfs.addSource(it); |
---|
1343 | while (!dfs.emptyQueue()) { |
---|
1344 | Edge edge = dfs.nextEdge(); |
---|
1345 | Node source = graph.source(edge); |
---|
1346 | Node target = graph.target(edge); |
---|
1347 | if (dfs.reached(target) && |
---|
1348 | dfs.predEdge(source) != graph.oppositeEdge(edge)) { |
---|
1349 | return false; |
---|
1350 | } |
---|
1351 | dfs.processNextEdge(); |
---|
1352 | } |
---|
1353 | } |
---|
1354 | } |
---|
1355 | return true; |
---|
1356 | } |
---|
1357 | |
---|
1358 | /// \ingroup topology |
---|
1359 | /// |
---|
1360 | /// \brief Check that the given undirected graph is tree. |
---|
1361 | /// |
---|
1362 | /// Check that the given undirected graph is tree. |
---|
1363 | /// \param graph The undirected graph. |
---|
1364 | /// \return %True when the graph is acyclic and connected. |
---|
1365 | template <typename UGraph> |
---|
1366 | bool tree(const UGraph& graph) { |
---|
1367 | checkConcept<concept::UGraph, UGraph>(); |
---|
1368 | typedef typename UGraph::Node Node; |
---|
1369 | typedef typename UGraph::NodeIt NodeIt; |
---|
1370 | typedef typename UGraph::Edge Edge; |
---|
1371 | Dfs<UGraph> dfs(graph); |
---|
1372 | dfs.init(); |
---|
1373 | dfs.addSource(NodeIt(graph)); |
---|
1374 | while (!dfs.emptyQueue()) { |
---|
1375 | Edge edge = dfs.nextEdge(); |
---|
1376 | Node source = graph.source(edge); |
---|
1377 | Node target = graph.target(edge); |
---|
1378 | if (dfs.reached(target) && |
---|
1379 | dfs.predEdge(source) != graph.oppositeEdge(edge)) { |
---|
1380 | return false; |
---|
1381 | } |
---|
1382 | dfs.processNextEdge(); |
---|
1383 | } |
---|
1384 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1385 | if (!dfs.reached(it)) { |
---|
1386 | return false; |
---|
1387 | } |
---|
1388 | } |
---|
1389 | return true; |
---|
1390 | } |
---|
1391 | |
---|
1392 | /// \ingroup topology |
---|
1393 | /// |
---|
1394 | /// \brief Check if the given undirected graph is bipartite or not |
---|
1395 | /// |
---|
1396 | /// The function checks if the given undirected \c graph graph is bipartite |
---|
1397 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
---|
1398 | /// \param graph The undirected graph. |
---|
1399 | /// \return %True if \c graph is bipartite, %false otherwise. |
---|
1400 | /// \sa bipartitePartitions |
---|
1401 | /// |
---|
1402 | /// \author Balazs Attila Mihaly |
---|
1403 | template<typename UGraph> |
---|
1404 | inline bool bipartite(const UGraph &graph){ |
---|
1405 | checkConcept<concept::UGraph, UGraph>(); |
---|
1406 | |
---|
1407 | typedef typename UGraph::NodeIt NodeIt; |
---|
1408 | typedef typename UGraph::EdgeIt EdgeIt; |
---|
1409 | |
---|
1410 | Bfs<UGraph> bfs(graph); |
---|
1411 | bfs.init(); |
---|
1412 | for(NodeIt i(graph);i!=INVALID;++i){ |
---|
1413 | if(!bfs.reached(i)){ |
---|
1414 | bfs.run(i); |
---|
1415 | } |
---|
1416 | } |
---|
1417 | for(EdgeIt i(graph);i!=INVALID;++i){ |
---|
1418 | if(bfs.dist(graph.source(i))==bfs.dist(graph.target(i)))return false; |
---|
1419 | } |
---|
1420 | return true; |
---|
1421 | } |
---|
1422 | |
---|
1423 | /// \ingroup topology |
---|
1424 | /// |
---|
1425 | /// \brief Check if the given undirected graph is bipartite or not |
---|
1426 | /// |
---|
1427 | /// The function checks if the given undirected graph is bipartite |
---|
1428 | /// or not. The \ref Bfs algorithm is used to calculate the result. |
---|
1429 | /// During the execution, the \c partMap will be set as the two |
---|
1430 | /// partitions of the graph. |
---|
1431 | /// \param graph The undirected graph. |
---|
1432 | /// \retval partMap A writable bool map of nodes. It will be set as the |
---|
1433 | /// two partitions of the graph. |
---|
1434 | /// \return %True if \c graph is bipartite, %false otherwise. |
---|
1435 | /// |
---|
1436 | /// \author Balazs Attila Mihaly |
---|
1437 | /// |
---|
1438 | /// \image html bipartite_partitions.png |
---|
1439 | /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
---|
1440 | template<typename UGraph, typename NodeMap> |
---|
1441 | inline bool bipartitePartitions(const UGraph &graph, NodeMap &partMap){ |
---|
1442 | checkConcept<concept::UGraph, UGraph>(); |
---|
1443 | |
---|
1444 | typedef typename UGraph::Node Node; |
---|
1445 | typedef typename UGraph::NodeIt NodeIt; |
---|
1446 | typedef typename UGraph::EdgeIt EdgeIt; |
---|
1447 | |
---|
1448 | Bfs<UGraph> bfs(graph); |
---|
1449 | bfs.init(); |
---|
1450 | for(NodeIt i(graph);i!=INVALID;++i){ |
---|
1451 | if(!bfs.reached(i)){ |
---|
1452 | bfs.addSource(i); |
---|
1453 | for(Node j=bfs.processNextNode();!bfs.emptyQueue(); |
---|
1454 | j=bfs.processNextNode()){ |
---|
1455 | partMap.set(j,bfs.dist(j)%2==0); |
---|
1456 | } |
---|
1457 | } |
---|
1458 | } |
---|
1459 | for(EdgeIt i(graph);i!=INVALID;++i){ |
---|
1460 | if(bfs.dist(graph.source(i)) == bfs.dist(graph.target(i)))return false; |
---|
1461 | } |
---|
1462 | return true; |
---|
1463 | } |
---|
1464 | |
---|
1465 | } //namespace lemon |
---|
1466 | |
---|
1467 | #endif //LEMON_TOPOLOGY_H |
---|