1 | #include<math.h> |
---|

2 | #include<lemon/list_graph.h> |
---|

3 | |
---|

4 | #include"bench_tools.h" |
---|

5 | |
---|

6 | using namespace lemon; |
---|

7 | |
---|

8 | ///Makes a full graph by adding and deleting a lot of edges; |
---|

9 | |
---|

10 | ///\param n Number of nodes. |
---|

11 | ///\param rat The funcion will make \f$rat\timesn^2\f$ edge addition and |
---|

12 | ///\f$(rat-1)\timesn^2\f$ deletion. |
---|

13 | ///\param p Tuning parameters. |
---|

14 | ///\warning \c rat, \c p, and \c n must be pairwise relative primes. |
---|

15 | template <class Graph> |
---|

16 | void makeFullGraph(int n, int rat, int p) |
---|

17 | { |
---|

18 | GRAPH_TYPEDEF_FACTORY(Graph); |
---|

19 | |
---|

20 | Graph G; |
---|

21 | |
---|

22 | // Node nodes[n]; |
---|

23 | std::vector<Node> nodes(n); |
---|

24 | for(int i=0;i<n;i++) nodes[i]=G.addNode(); |
---|

25 | |
---|

26 | //Edge equ[rat]; |
---|

27 | std::vector<Edge> equ(rat); |
---|

28 | |
---|

29 | long long int count; |
---|

30 | |
---|

31 | for(count=0;count<rat;count++) { |
---|

32 | equ[count%rat]=G.addEdge(nodes[(count*p)%n],nodes[(count*p/n)%n]); |
---|

33 | } |
---|

34 | for(;(count%rat)||((count*p)%n)||((count*p/n)%n);count++) { |
---|

35 | // if(!(count%1000000)) fprintf(stderr,"%d\r",count); |
---|

36 | if(count%rat) G.erase(equ[count%rat]); |
---|

37 | equ[count%rat]=G.addEdge(nodes[(count*p)%n],nodes[(count*p/n)%n]); |
---|

38 | } |
---|

39 | // std::cout << "Added " << count |
---|

40 | // << " ( " << n << "^2 * " << rat << " ) edges\n"; |
---|

41 | |
---|

42 | |
---|

43 | // for(int i=0;1;i++) ; |
---|

44 | } |
---|

45 | |
---|

46 | int main() |
---|

47 | { |
---|

48 | lemon::Timer T; |
---|

49 | makeFullGraph<ListGraph>(nextPrim(1000),nextPrim(300),nextPrim(100)); |
---|

50 | |
---|

51 | PrintTime("BIG",T); |
---|

52 | T.reset(); |
---|

53 | makeFullGraph<ListGraph>(nextPrim(100),nextPrim(30000),nextPrim(150)); |
---|

54 | |
---|

55 | PrintTime("SMALL",T); |
---|

56 | } |
---|