1 | #include<math.h> |
---|
2 | #include<lemon/list_graph.h> |
---|
3 | |
---|
4 | #include"bench_tools.h" |
---|
5 | |
---|
6 | using namespace lemon; |
---|
7 | |
---|
8 | ///Makes a full graph by adding and deleting a lot of edges; |
---|
9 | |
---|
10 | ///\param n Number of nodes. |
---|
11 | ///\param rat The funcion will make \f$rat\timesn^2\f$ edge addition and |
---|
12 | ///\f$(rat-1)\timesn^2\f$ deletion. |
---|
13 | ///\param p Tuning parameters. |
---|
14 | ///\warning \c rat, \c p, and \c n must be pairwise relative primes. |
---|
15 | template <class Graph> |
---|
16 | void makeFullGraph(int n, int rat, int p) |
---|
17 | { |
---|
18 | GRAPH_TYPEDEF_FACTORY(Graph); |
---|
19 | |
---|
20 | Graph G; |
---|
21 | |
---|
22 | // Node nodes[n]; |
---|
23 | std::vector<Node> nodes(n); |
---|
24 | for(int i=0;i<n;i++) nodes[i]=G.addNode(); |
---|
25 | |
---|
26 | //Edge equ[rat]; |
---|
27 | std::vector<Edge> equ(rat); |
---|
28 | |
---|
29 | long long int count; |
---|
30 | |
---|
31 | for(count=0;count<rat;count++) { |
---|
32 | equ[count%rat]=G.addEdge(nodes[(count*p)%n],nodes[(count*p/n)%n]); |
---|
33 | } |
---|
34 | for(;(count%rat)||((count*p)%n)||((count*p/n)%n);count++) { |
---|
35 | // if(!(count%1000000)) fprintf(stderr,"%d\r",count); |
---|
36 | if(count%rat) G.erase(equ[count%rat]); |
---|
37 | equ[count%rat]=G.addEdge(nodes[(count*p)%n],nodes[(count*p/n)%n]); |
---|
38 | } |
---|
39 | // std::cout << "Added " << count |
---|
40 | // << " ( " << n << "^2 * " << rat << " ) edges\n"; |
---|
41 | |
---|
42 | |
---|
43 | // for(int i=0;1;i++) ; |
---|
44 | } |
---|
45 | |
---|
46 | int main() |
---|
47 | { |
---|
48 | lemon::Timer T; |
---|
49 | makeFullGraph<ListGraph>(nextPrim(1000),nextPrim(300),nextPrim(100)); |
---|
50 | |
---|
51 | PrintTime("BIG",T); |
---|
52 | T.reset(); |
---|
53 | makeFullGraph<ListGraph>(nextPrim(100),nextPrim(30000),nextPrim(150)); |
---|
54 | |
---|
55 | PrintTime("SMALL",T); |
---|
56 | } |
---|