1 | #include<math.h> |
---|
2 | #include<hugo/list_graph.h> |
---|
3 | #include<hugo/time_measure.h> |
---|
4 | #include<iostream> |
---|
5 | #include<sage_graph.h> |
---|
6 | |
---|
7 | using namespace hugo; |
---|
8 | |
---|
9 | ///An experimental typedef factory |
---|
10 | #define GRAPH_TYPEDEF_FACTORY(Graph) \ |
---|
11 | typedef typename Graph:: Node Node;\ |
---|
12 | typedef typename Graph:: NodeIt NodeIn;\ |
---|
13 | typedef typename Graph:: Edge Edge;\ |
---|
14 | typedef typename Graph:: EdgeIt EdgeIt;\ |
---|
15 | typedef typename Graph:: InEdgeIt InEdgeIt;\ |
---|
16 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
17 | |
---|
18 | |
---|
19 | ///A primitive primtest |
---|
20 | bool isPrim(int n) |
---|
21 | { |
---|
22 | if(n%2) { |
---|
23 | for(int k=3;n/k>=k;k+=2) |
---|
24 | if(!(n%k)) return false; |
---|
25 | return true; |
---|
26 | } |
---|
27 | return false; |
---|
28 | } |
---|
29 | |
---|
30 | ///Finds the smallest prime not less then \c n. |
---|
31 | int nextPrim(int n) |
---|
32 | { |
---|
33 | for(n+=!(n%2);!isPrim(n);n+=2) ; |
---|
34 | return n; |
---|
35 | } |
---|
36 | |
---|
37 | ///Makes a full graph by adding and deleting a lot of edges; |
---|
38 | |
---|
39 | ///\param n Number of nodes. |
---|
40 | ///\param rat The funcion will make \f$rat\timesn^2\f$ edge addition and |
---|
41 | ///\f$(rat-1)\timesn^2\f$ deletion. |
---|
42 | ///\param p Tuning parameters. |
---|
43 | ///\warning \c rat, \c p, and \c n must be pairwise relative primes. |
---|
44 | template <class Graph> |
---|
45 | void makeFullGraph(int n, int rat, int p) |
---|
46 | { |
---|
47 | GRAPH_TYPEDEF_FACTORY(Graph); |
---|
48 | |
---|
49 | Graph G; |
---|
50 | |
---|
51 | Node nodes[n]; |
---|
52 | for(int i=0;i<n;i++) nodes[i]=G.addNode(); |
---|
53 | |
---|
54 | Edge equ[rat]; |
---|
55 | |
---|
56 | unsigned long long int count; |
---|
57 | |
---|
58 | for(count=0;count<rat;count++) { |
---|
59 | equ[count%rat]=G.addEdge(nodes[(count*p)%n],nodes[(count*p/n)%n]); |
---|
60 | } |
---|
61 | for(;(count%rat)||((count*p)%n)||((count*p/n)%n);count++) { |
---|
62 | // if(!(count%1000000)) fprintf(stderr,"%d\r",count); |
---|
63 | if(count%rat) G.erase(equ[count%rat]); |
---|
64 | equ[count%rat]=G.addEdge(nodes[(count*p)%n],nodes[(count*p/n)%n]); |
---|
65 | } |
---|
66 | std::cout << "Added " << count |
---|
67 | << " ( " << n << "^2 * " << rat << " ) edges\n"; |
---|
68 | // for(int i=0;1;i++) ; |
---|
69 | } |
---|
70 | |
---|
71 | int main() |
---|
72 | { |
---|
73 | std::cout << "START: n=" << nextPrim(1000) << " rat=" |
---|
74 | << nextPrim(300) << " p=" << nextPrim(100) << '\n'; |
---|
75 | hugo::Timer T; |
---|
76 | makeFullGraph<ListGraph>(nextPrim(1000),nextPrim(300),nextPrim(100)); |
---|
77 | std::cout << T << '\n'; |
---|
78 | std::cout << "START: n=" << nextPrim(1000) << " rat=" |
---|
79 | << nextPrim(300) << " p=" << nextPrim(100) << '\n'; |
---|
80 | T.reset(); |
---|
81 | makeFullGraph<ListGraph>(nextPrim(100),nextPrim(30000),nextPrim(150)); |
---|
82 | std::cout << T << '\n'; |
---|
83 | } |
---|