COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/hugo/bfs.h @ 906:17f31d280385

Last change on this file since 906:17f31d280385 was 906:17f31d280385, checked in by Alpar Juttner, 20 years ago

Copyright header added.

File size: 8.1 KB
Line 
1/* -*- C++ -*-
2 * src/hugo/bfs.h - Part of HUGOlib, a generic C++ optimization library
3 *
4 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Combinatorial Optimization Research Group, EGRES).
6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
17#ifndef HUGO_BFS_H
18#define HUGO_BFS_H
19
20///\ingroup flowalgs
21///\file
22///\brief Bfs algorithm.
23///
24///\todo Revise Manual.
25
26#include <hugo/bin_heap.h>
27#include <hugo/invalid.h>
28
29namespace hugo {
30
31/// \addtogroup flowalgs
32/// @{
33
34  ///%BFS algorithm class.
35
36  ///This class provides an efficient implementation of %BFS algorithm.
37  ///\param GR The graph type the algorithm runs on.
38  ///This class does the same as Dijkstra does with constant 1 edge length,
39  ///but it is faster.
40  ///
41  ///\author Alpar Juttner
42
43#ifdef DOXYGEN
44  template <typename GR>
45#else
46  template <typename GR>
47#endif
48  class Bfs{
49  public:
50    ///The type of the underlying graph.
51    typedef GR Graph;
52    ///.
53    typedef typename Graph::Node Node;
54    ///.
55    typedef typename Graph::NodeIt NodeIt;
56    ///.
57    typedef typename Graph::Edge Edge;
58    ///.
59    typedef typename Graph::OutEdgeIt OutEdgeIt;
60   
61    ///\brief The type of the map that stores the last
62    ///edges of the shortest paths.
63    typedef typename Graph::template NodeMap<Edge> PredMap;
64    ///\brief The type of the map that stores the last but one
65    ///nodes of the shortest paths.
66    typedef typename Graph::template NodeMap<Node> PredNodeMap;
67    ///The type of the map that stores the dists of the nodes.
68    typedef typename Graph::template NodeMap<int> DistMap;
69
70  private:
71    /// Pointer to the underlying graph.
72    const Graph *G;
73    ///Pointer to the map of predecessors edges.
74    PredMap *predecessor;
75    ///Indicates if \ref predecessor is locally allocated (\c true) or not.
76    bool local_predecessor;
77    ///Pointer to the map of predecessors nodes.
78    PredNodeMap *pred_node;
79    ///Indicates if \ref pred_node is locally allocated (\c true) or not.
80    bool local_pred_node;
81    ///Pointer to the map of distances.
82    DistMap *distance;
83    ///Indicates if \ref distance is locally allocated (\c true) or not.
84    bool local_distance;
85
86    ///The source node of the last execution.
87    Node source;
88
89
90    ///Initializes the maps.
91    void init_maps()
92    {
93      if(!predecessor) {
94        local_predecessor = true;
95        predecessor = new PredMap(*G);
96      }
97      if(!pred_node) {
98        local_pred_node = true;
99        pred_node = new PredNodeMap(*G);
100      }
101      if(!distance) {
102        local_distance = true;
103        distance = new DistMap(*G);
104      }
105    }
106   
107  public :   
108    ///Constructor.
109   
110    ///\param _G the graph the algorithm will run on.
111    Bfs(const Graph& _G) :
112      G(&_G),
113      predecessor(NULL), local_predecessor(false),
114      pred_node(NULL), local_pred_node(false),
115      distance(NULL), local_distance(false)
116    { }
117   
118    ///Destructor.
119    ~Bfs()
120    {
121      if(local_predecessor) delete predecessor;
122      if(local_pred_node) delete pred_node;
123      if(local_distance) delete distance;
124    }
125
126    ///Sets the map storing the predecessor edges.
127
128    ///Sets the map storing the predecessor edges.
129    ///If you don't use this function before calling \ref run(),
130    ///it will allocate one. The destuctor deallocates this
131    ///automatically allocated map, of course.
132    ///\return <tt> (*this) </tt>
133    Bfs &setPredMap(PredMap &m)
134    {
135      if(local_predecessor) {
136        delete predecessor;
137        local_predecessor=false;
138      }
139      predecessor = &m;
140      return *this;
141    }
142
143    ///Sets the map storing the predecessor nodes.
144
145    ///Sets the map storing the predecessor nodes.
146    ///If you don't use this function before calling \ref run(),
147    ///it will allocate one. The destuctor deallocates this
148    ///automatically allocated map, of course.
149    ///\return <tt> (*this) </tt>
150    Bfs &setPredNodeMap(PredNodeMap &m)
151    {
152      if(local_pred_node) {
153        delete pred_node;
154        local_pred_node=false;
155      }
156      pred_node = &m;
157      return *this;
158    }
159
160    ///Sets the map storing the distances calculated by the algorithm.
161
162    ///Sets the map storing the distances calculated by the algorithm.
163    ///If you don't use this function before calling \ref run(),
164    ///it will allocate one. The destuctor deallocates this
165    ///automatically allocated map, of course.
166    ///\return <tt> (*this) </tt>
167    Bfs &setDistMap(DistMap &m)
168    {
169      if(local_distance) {
170        delete distance;
171        local_distance=false;
172      }
173      distance = &m;
174      return *this;
175    }
176   
177  ///Runs %BFS algorithm from node \c s.
178
179  ///This method runs the %BFS algorithm from a root node \c s
180  ///in order to
181  ///compute a
182  ///shortest path to each node. The algorithm computes
183  ///- The %BFS tree.
184  ///- The distance of each node from the root.
185 
186    void run(Node s) {
187     
188      init_maps();
189     
190      source = s;
191     
192      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
193        predecessor->set(u,INVALID);
194        pred_node->set(u,INVALID);
195      }
196     
197      int N=G->nodeNum();
198      std::vector<typename Graph::Node> Q(N);
199      int Qh=0;
200      int Qt=0;
201     
202      Q[Qh++]=source;
203      distance->set(s, 0);
204      do {
205        Node m;
206        Node n=Q[Qt++];
207        int d= (*distance)[n]+1;
208       
209        for(OutEdgeIt e(*G,n);e!=INVALID;++e)
210          if((m=G->head(e))!=s && (*predecessor)[m]==INVALID) {
211            Q[Qh++]=m;
212            predecessor->set(m,e);
213            pred_node->set(m,n);
214            distance->set(m,d);
215          }
216      } while(Qt!=Qh);
217    }
218   
219    ///The distance of a node from the root.
220
221    ///Returns the distance of a node from the root.
222    ///\pre \ref run() must be called before using this function.
223    ///\warning If node \c v in unreachable from the root the return value
224    ///of this funcion is undefined.
225    int dist(Node v) const { return (*distance)[v]; }
226
227    ///Returns the 'previous edge' of the %BFS path tree.
228
229    ///For a node \c v it returns the 'previous edge' of the %BFS tree,
230    ///i.e. it returns the last edge of a shortest path from the root to \c
231    ///v. It is \ref INVALID
232    ///if \c v is unreachable from the root or if \c v=s. The
233    ///%BFS tree used here is equal to the %BFS tree used in
234    ///\ref predNode(Node v).  \pre \ref run() must be called before using
235    ///this function.
236    Edge pred(Node v) const { return (*predecessor)[v]; }
237
238    ///Returns the 'previous node' of the %BFS tree.
239
240    ///For a node \c v it returns the 'previous node' on the %BFS tree,
241    ///i.e. it returns the last but one node from a shortest path from the
242    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
243    ///\c v=s. The shortest path tree used here is equal to the %BFS
244    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
245    ///using this function.
246    Node predNode(Node v) const { return (*pred_node)[v]; }
247   
248    ///Returns a reference to the NodeMap of distances.
249   
250    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
251    ///be called before using this function.
252    const DistMap &distMap() const { return *distance;}
253 
254    ///Returns a reference to the %BFS tree map.
255
256    ///Returns a reference to the NodeMap of the edges of the
257    ///%BFS tree.
258    ///\pre \ref run() must be called before using this function.
259    const PredMap &predMap() const { return *predecessor;}
260 
261    ///Returns a reference to the map of last but one nodes of shortest paths.
262
263    ///Returns a reference to the NodeMap of the last but one nodes on the
264    ///%BFS tree.
265    ///\pre \ref run() must be called before using this function.
266    const PredNodeMap &predNodeMap() const { return *pred_node;}
267
268    ///Checks if a node is reachable from the root.
269
270    ///Returns \c true if \c v is reachable from the root.
271    ///\note The root node is reported to be reached!
272    ///
273    ///\pre \ref run() must be called before using this function.
274    ///
275    bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
276   
277  };
278 
279/// @}
280 
281} //END OF NAMESPACE HUGO
282
283#endif
284
285
Note: See TracBrowser for help on using the repository browser.