// -*- c++ -*- #ifndef HUGO_GRAPH_WRAPPER_H #define HUGO_GRAPH_WRAPPER_H ///\ingroup gwrappers ///\file ///\brief Several graph wrappers. /// ///This file contains several useful graph wrapper functions. /// ///\author Marton Makai #include #include #include namespace hugo { // Graph wrappers /// \addtogroup gwrappers /// A main parts of HUGOlib are the different graph structures, /// generic graph algorithms, graph concepts which couple these, and /// graph wrappers. While the previous ones are more or less clear, the /// latter notion needs further explanation. /// Graph wrappers are graph classes which serve for considering graph /// structures in different ways. A short example makes the notion much /// clearer. /// Suppose that we have an instance \c g of a directed graph /// type say \c ListGraph and an algorithm /// \code template int algorithm(const Graph&); \endcode /// is needed to run on the reversely oriented graph. /// It may be expensive (in time or in memory usage) to copy /// \c g with the reverse orientation. /// Thus, a wrapper class /// \code template class RevGraphWrapper; \endcode is used. /// The code looks as follows /// \code /// ListGraph g; /// RevGraphWrapper rgw(g); /// int result=algorithm(rgw); /// \endcode /// After running the algorithm, the original graph \c g /// remains untouched. Thus the graph wrapper used above is to consider the /// original graph with reverse orientation. /// This techniques gives rise to an elegant code, and /// based on stable graph wrappers, complex algorithms can be /// implemented easily. /// In flow, circulation and bipartite matching problems, the residual /// graph is of particular importance. Combining a wrapper implementing /// this, shortest path algorithms and minimum mean cycle algorithms, /// a range of weighted and cardinality optimization algorithms can be /// obtained. For lack of space, for other examples, /// the interested user is referred to the detailed documentation of graph /// wrappers. /// The behavior of graph wrappers can be very different. Some of them keep /// capabilities of the original graph while in other cases this would be /// meaningless. This means that the concepts that they are a model of depend /// on the graph wrapper, and the wrapped graph(s). /// If an edge of \c rgw is deleted, this is carried out by /// deleting the corresponding edge of \c g. But for a residual /// graph, this operation has no sense. /// Let we stand one more example here to simplify your work. /// wrapper class /// \code template class RevGraphWrapper; \endcode /// has constructor /// RevGraphWrapper(Graph& _g). /// This means that in a situation, /// when a const ListGraph& reference to a graph is given, /// then it have to be instantiated with Graph=const ListGraph. /// \code /// int algorithm1(const ListGraph& g) { /// RevGraphWrapper rgw(g); /// return algorithm2(rgw); /// } /// \endcode /// \addtogroup gwrappers /// @{ ///Base type for the Graph Wrappers ///This is the base type for the Graph Wrappers. ///\todo Some more docs... /// ///\author Marton Makai template class GraphWrapper { protected: Graph* graph; GraphWrapper() : graph(0) { } void setGraph(Graph& _graph) { graph=&_graph; } public: typedef Graph BaseGraph; typedef Graph ParentGraph; GraphWrapper(Graph& _graph) : graph(&_graph) { } GraphWrapper(const GraphWrapper& gw) : graph(gw.graph) { } // Graph& getGraph() const { return *graph; } typedef typename Graph::Node Node; class NodeIt : public Node { const GraphWrapper* gw; friend class GraphWrapper; public: NodeIt() { } // NodeIt(const NodeIt& n) : Node(n), gw(n.gw) { } NodeIt(Invalid i) : Node(i) { } NodeIt(const GraphWrapper& _gw) : Node(typename Graph::NodeIt(*(_gw.graph))), gw(&_gw) { } NodeIt(const GraphWrapper& _gw, const Node& n) : Node(n), gw(&_gw) { } NodeIt& operator++() { *(static_cast(this))= ++(typename Graph::NodeIt(*(gw->graph), *this)); return *this; } }; typedef typename Graph::Edge Edge; class OutEdgeIt : public Edge { const GraphWrapper* gw; friend class GraphWrapper; public: OutEdgeIt() { } //OutEdgeIt(const OutEdgeIt& e) : Edge(e), gw(e.gw) { } OutEdgeIt(Invalid i) : Edge(i) { } OutEdgeIt(const GraphWrapper& _gw, const Node& n) : Edge(typename Graph::OutEdgeIt(*(_gw.graph), n)), gw(&_gw) { } OutEdgeIt(const GraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } OutEdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); return *this; } }; class InEdgeIt : public Edge { const GraphWrapper* gw; friend class GraphWrapper; public: InEdgeIt() { } //InEdgeIt(const InEdgeIt& e) : Edge(e), gw(e.gw) { } InEdgeIt(Invalid i) : Edge(i) { } InEdgeIt(const GraphWrapper& _gw, const Node& n) : Edge(typename Graph::InEdgeIt(*(_gw.graph), n)), gw(&_gw) { } InEdgeIt(const GraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } InEdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); return *this; } }; //typedef typename Graph::SymEdgeIt SymEdgeIt; class EdgeIt : public Edge { const GraphWrapper* gw; friend class GraphWrapper; public: EdgeIt() { } //EdgeIt(const EdgeIt& e) : Edge(e), gw(e.gw) { } EdgeIt(Invalid i) : Edge(i) { } EdgeIt(const GraphWrapper& _gw) : Edge(typename Graph::EdgeIt(*(_gw.graph))), gw(&_gw) { } EdgeIt(const GraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } EdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); return *this; } }; NodeIt& first(NodeIt& i) const { i=NodeIt(*this); return i; } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } // NodeIt& next(NodeIt& i) const { graph->next(i.n); return i; } // OutEdgeIt& next(OutEdgeIt& i) const { graph->next(i.e); return i; } // InEdgeIt& next(InEdgeIt& i) const { graph->next(i.e); return i; } // EdgeIt& next(EdgeIt& i) const { graph->next(i.e); return i; } Node tail(const Edge& e) const { return Node(graph->tail(static_cast(e))); } Node head(const Edge& e) const { return Node(graph->head(static_cast(e))); } // bool valid(const Node& n) const { // return graph->valid(static_cast(n)); } // bool valid(const Edge& e) const { // return graph->valid(static_cast(e)); } int nodeNum() const { return graph->nodeNum(); } int edgeNum() const { return graph->edgeNum(); } // Node aNode(const OutEdgeIt& e) const { return Node(graph->aNode(e.e)); } // Node aNode(const InEdgeIt& e) const { return Node(graph->aNode(e.e)); } // Node bNode(const OutEdgeIt& e) const { return Node(graph->bNode(e.e)); } // Node bNode(const InEdgeIt& e) const { return Node(graph->bNode(e.e)); } Node addNode() const { return Node(graph->addNode()); } Edge addEdge(const Node& tail, const Node& head) const { return Edge(graph->addEdge(tail, head)); } void erase(const Node& i) const { graph->erase(i); } void erase(const Edge& i) const { graph->erase(i); } void clear() const { graph->clear(); } bool forward(const Edge& e) const { return graph->forward(e); } bool backward(const Edge& e) const { return graph->backward(e); } int id(const Node& v) const { return graph->id(v); } int id(const Edge& e) const { return graph->id(e); } Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); } template class NodeMap : public Graph::template NodeMap { typedef typename Graph::template NodeMap Parent; public: NodeMap(const GraphWrapper& gw) : Parent(*(gw.graph)) { } NodeMap(const GraphWrapper& gw, T a) : Parent(*(gw.graph), a) { } // NodeMap(const NodeMap& map) : Parent(map) { } // template // NodeMap(const Map& map) : Parent(map) { } }; template class EdgeMap : public Graph::template EdgeMap { typedef typename Graph::template EdgeMap Parent; public: EdgeMap(const GraphWrapper& gw) : Parent(*(gw.graph)) { } EdgeMap(const GraphWrapper& gw, T a) : Parent(*(gw.graph), a) { } // EdgeMap(const EdgeMap& map) : Parent(map) { } // template // EdgeMap(const Map& map) : Parent(map) { } }; }; /// A graph wrapper which reverses the orientation of the edges. /// A graph wrapper which reverses the orientation of the edges. /// Thus \c Graph have to be a directed graph type. /// ///\author Marton Makai template class RevGraphWrapper : public GraphWrapper { public: typedef GraphWrapper Parent; protected: RevGraphWrapper() : GraphWrapper() { } public: RevGraphWrapper(Graph& _graph) : GraphWrapper(_graph) { } RevGraphWrapper(const RevGraphWrapper& gw) : Parent(gw) { } typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::Edge Edge; //remark: OutEdgeIt and InEdgeIt cannot be typedef-ed to each other //because this does not work is some of them are not defined in the //original graph. The problem with this is that typedef-ed stuff //are instantiated in c++. class OutEdgeIt : public Edge { const RevGraphWrapper* gw; friend class GraphWrapper; public: OutEdgeIt() { } //OutEdgeIt(const OutEdgeIt& e) : Edge(e), gw(e.gw) { } OutEdgeIt(Invalid i) : Edge(i) { } OutEdgeIt(const RevGraphWrapper& _gw, const Node& n) : Edge(typename Graph::InEdgeIt(*(_gw.graph), n)), gw(&_gw) { } OutEdgeIt(const RevGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } OutEdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); return *this; } }; class InEdgeIt : public Edge { const RevGraphWrapper* gw; friend class GraphWrapper; public: InEdgeIt() { } //InEdgeIt(const InEdgeIt& e) : Edge(e), gw(e.gw) { } InEdgeIt(Invalid i) : Edge(i) { } InEdgeIt(const RevGraphWrapper& _gw, const Node& n) : Edge(typename Graph::OutEdgeIt(*(_gw.graph), n)), gw(&_gw) { } InEdgeIt(const RevGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } InEdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); return *this; } }; using GraphWrapper::first; OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } // using GraphWrapper::next; // OutEdgeIt& next(OutEdgeIt& i) const { this->graph->next(i.e); return i; } // InEdgeIt& next(InEdgeIt& i) const { this->graph->next(i.e); return i; } // Node aNode(const OutEdgeIt& e) const { // return Node(this->graph->aNode(e.e)); } // Node aNode(const InEdgeIt& e) const { // return Node(this->graph->aNode(e.e)); } // Node bNode(const OutEdgeIt& e) const { // return Node(this->graph->bNode(e.e)); } // Node bNode(const InEdgeIt& e) const { // return Node(this->graph->bNode(e.e)); } Node tail(const Edge& e) const { return GraphWrapper::head(e); } Node head(const Edge& e) const { return GraphWrapper::tail(e); } }; /// A graph wrapper for hiding nodes and edges from a graph. /// This wrapper shows a graph with filtered node-set and /// edge-set. Given a bool-valued map on the node-set and one on /// the edge-set of the graphs, the iterators shows only the objects /// having true value. /// The quick brown fox iterators jump over /// the lazy dog nodes or edges if their values for are false in the /// corresponding bool maps. /// ///\author Marton Makai template class SubGraphWrapper : public GraphWrapper { public: typedef GraphWrapper Parent; protected: NodeFilterMap* node_filter_map; EdgeFilterMap* edge_filter_map; SubGraphWrapper() : GraphWrapper(), node_filter_map(0), edge_filter_map(0) { } void setNodeFilterMap(NodeFilterMap& _node_filter_map) { node_filter_map=&_node_filter_map; } void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { edge_filter_map=&_edge_filter_map; } public: SubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map, EdgeFilterMap& _edge_filter_map) : GraphWrapper(_graph), node_filter_map(&_node_filter_map), edge_filter_map(&_edge_filter_map) { } typedef typename GraphWrapper::Node Node; class NodeIt : public Node { const SubGraphWrapper* gw; friend class SubGraphWrapper; public: NodeIt() { } // NodeIt(const NodeIt& n) : Node(n), gw(n.gw) { } NodeIt(Invalid i) : Node(i) { } NodeIt(const SubGraphWrapper& _gw) : Node(typename Graph::NodeIt(*(_gw.graph))), gw(&_gw) { while (*static_cast(this)!=INVALID && !(*(gw->edge_filter_map))[*this]) *(static_cast(this))= ++(typename Graph::NodeIt(*(gw->graph), *this)); } NodeIt(const SubGraphWrapper& _gw, const Node& n) : Node(n), gw(&_gw) { } NodeIt& operator++() { *(static_cast(this))= ++(typename Graph::NodeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->node_filter_map))[*this]) *(static_cast(this))= ++(typename Graph::NodeIt(*(gw->graph), *this)); return *this; } }; typedef typename GraphWrapper::Edge Edge; class OutEdgeIt : public Edge { const SubGraphWrapper* gw; friend class SubGraphWrapper; public: OutEdgeIt() { } // OutEdgeIt(const OutEdgeIt& e) : Edge(e), gw(e.gw) { } OutEdgeIt(Invalid i) : Edge(i) { } OutEdgeIt(const SubGraphWrapper& _gw, const Node& n) : Edge(typename Graph::OutEdgeIt(*(_gw.graph), n)), gw(&_gw) { while (*static_cast(this)!=INVALID && !(*(gw->edge_filter_map))[*this]) *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); } OutEdgeIt(const SubGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } OutEdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->edge_filter_map))[*this]) *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); return *this; } }; class InEdgeIt : public Edge { const SubGraphWrapper* gw; friend class SubGraphWrapper; public: InEdgeIt() { } // InEdgeIt(const InEdgeIt& e) : Edge(e), gw(e.gw) { } InEdgeIt(Invalid i) : Edge(i) { } InEdgeIt(const SubGraphWrapper& _gw, const Node& n) : Edge(typename Graph::InEdgeIt(*(_gw.graph), n)), gw(&_gw) { while (*static_cast(this)!=INVALID && !(*(gw->edge_filter_map))[*this]) *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); } InEdgeIt(const SubGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } InEdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->edge_filter_map))[*this]) *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); return *this; } }; class EdgeIt : public Edge { const SubGraphWrapper* gw; friend class SubGraphWrapper; public: EdgeIt() { } // EdgeIt(const EdgeIt& e) : Edge(e), gw(e.gw) { } EdgeIt(Invalid i) : Edge(i) { } EdgeIt(const SubGraphWrapper& _gw) : Edge(typename Graph::EdgeIt(*(_gw.graph))), gw(&_gw) { while (*static_cast(this)!=INVALID && !(*(gw->edge_filter_map))[*this]) *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); } EdgeIt(const SubGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } EdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->edge_filter_map))[*this]) *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); return *this; } }; NodeIt& first(NodeIt& i) const { i=NodeIt(*this); return i; } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } // NodeIt& next(NodeIt& i) const { // this->graph->next(i.n); // while (this->graph->valid(i) && !(*node_filter_map)[i.n]) { // this->graph->next(i.n); } // return i; // } // OutEdgeIt& next(OutEdgeIt& i) const { // this->graph->next(i.e); // while (this->graph->valid(i) && !(*edge_filter_map)[i.e]) { // this->graph->next(i.e); } // return i; // } // InEdgeIt& next(InEdgeIt& i) const { // this->graph->next(i.e); // while (this->graph->valid(i) && !(*edge_filter_map)[i.e]) { // this->graph->next(i.e); } // return i; // } // EdgeIt& next(EdgeIt& i) const { // this->graph->next(i.e); // while (this->graph->valid(i) && !(*edge_filter_map)[i.e]) { // this->graph->next(i.e); } // return i; // } // Node aNode(const OutEdgeIt& e) const { // return Node(this->graph->aNode(e.e)); } // Node aNode(const InEdgeIt& e) const { // return Node(this->graph->aNode(e.e)); } // Node bNode(const OutEdgeIt& e) const { // return Node(this->graph->bNode(e.e)); } // Node bNode(const InEdgeIt& e) const { // return Node(this->graph->bNode(e.e)); } /// This function hides \c n in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c n /// to be false in the corresponding node-map. void hide(const Node& n) const { node_filter_map->set(n, false); } /// This function hides \c e in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c e /// to be false in the corresponding edge-map. void hide(const Edge& e) const { edge_filter_map->set(e, false); } /// The value of \c n is set to be true in the node-map which stores /// hide information. If \c n was hidden previuosly, then it is shown /// again void unHide(const Node& n) const { node_filter_map->set(n, true); } /// The value of \c e is set to be true in the edge-map which stores /// hide information. If \c e was hidden previuosly, then it is shown /// again void unHide(const Edge& e) const { edge_filter_map->set(e, true); } /// Returns true if \c n is hidden. bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } /// Returns true if \c n is hidden. bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } /// \warning This is a linear time operation and works only if /// \c Graph::NodeIt is defined. int nodeNum() const { int i=0; for (NodeIt n(*this); n!=INVALID; ++n) ++i; return i; } /// \warning This is a linear time operation and works only if /// \c Graph::EdgeIt is defined. int edgeNum() const { int i=0; for (EdgeIt e(*this); e!=INVALID; ++e) ++i; return i; } }; // /// \brief A wrapper for forgetting the orientation of a graph. // /// // /// A wrapper for getting an undirected graph by forgetting // /// the orientation of a directed one. // /// // /// \author Marton Makai // /// does not work in the new concept. template class UndirGraphWrapper : public GraphWrapper { public: typedef GraphWrapper Parent; protected: UndirGraphWrapper() : GraphWrapper() { } public: typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::NodeIt NodeIt; typedef typename GraphWrapper::Edge Edge; typedef typename GraphWrapper::EdgeIt EdgeIt; UndirGraphWrapper(Graph& _graph) : GraphWrapper(_graph) { } class OutEdgeIt { friend class UndirGraphWrapper; bool out_or_in; //true iff out typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; public: OutEdgeIt() { } OutEdgeIt(const Invalid& i) : Edge(i) { } OutEdgeIt(const UndirGraphWrapper& _G, const Node& _n) { out_or_in=true; _G.graph->first(out, _n); if (!(_G.graph->valid(out))) { out_or_in=false; _G.graph->first(in, _n); } } operator Edge() const { if (out_or_in) return Edge(out); else return Edge(in); } }; //FIXME InEdgeIt typedef OutEdgeIt InEdgeIt; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } //FIXME // InEdgeIt& first(InEdgeIt& i, const Node& p) const { // i=InEdgeIt(*this, p); return i; // } // EdgeIt& first(EdgeIt& i) const { // i=EdgeIt(*this); return i; // } using GraphWrapper::next; // NodeIt& next(NodeIt& n) const { // GraphWrapper::next(n); // return n; // } OutEdgeIt& next(OutEdgeIt& e) const { if (e.out_or_in) { typename Graph::Node n=this->graph->tail(e.out); this->graph->next(e.out); if (!this->graph->valid(e.out)) { e.out_or_in=false; this->graph->first(e.in, n); } } else { this->graph->next(e.in); } return e; } //FIXME InEdgeIt // EdgeIt& next(EdgeIt& e) const { // GraphWrapper::next(n); // // graph->next(e.e); // return e; // } Node aNode(const OutEdgeIt& e) const { if (e.out_or_in) return this->graph->tail(e); else return this->graph->head(e); } Node bNode(const OutEdgeIt& e) const { if (e.out_or_in) return this->graph->head(e); else return this->graph->tail(e); } }; /// \brief An undirected graph template. /// /// An undirected graph template. /// This class works as an undirected graph and a directed graph of /// class \c Graph is used for the physical storage. /// \ingroup graphs template class UndirGraph : public UndirGraphWrapper { typedef UndirGraphWrapper Parent; protected: Graph gr; public: UndirGraph() : UndirGraphWrapper() { Parent::setGraph(gr); } }; ///\brief A wrapper for composing a subgraph of a /// bidirected graph made from a directed one. /// /// Suppose that for a directed graph $G=(V, A)$, /// two predicates on the edge-set, $forward_filter$, and $backward_filter$ /// is given, and we are dealing with the directed graph /// a $G'=(V, \{uv : uv\in A \mbox{ and } forward_filter(uv) \mbox{ is true}\}+\{vu : uv\in A \mbox{ and } backward_filter(uv) \mbox{ is true}\})$. /// The purpose of writing + instead of union is because parallel /// edges can arose. /// In other words, a subgraph of the bidirected graph obtained, which /// is given by orienting the edges of the original graph in both directions. /// An example for such a construction is the \c RevGraphWrapper where the /// forward_filter is everywhere false and the backward_filter is /// everywhere true. We note that for sake of efficiency, /// \c RevGraphWrapper is implemented in a different way. /// But BidirGraphWrapper is obtained from /// SubBidirGraphWrapper by considering everywhere true /// predicates both forward_filter and backward_filter. /// Finally, one of the most important applications of SubBidirGraphWrapper /// is ResGraphWrapper, which stands for the residual graph in directed /// flow and circulation problems. /// As wrappers usually, the SubBidirGraphWrapper implements the /// above mentioned graph structure without its physical storage, /// that is the whole stuff eats constant memory. /// As the oppositely directed edges are logical different, /// the maps are able to attach different values for them. template class SubBidirGraphWrapper : public GraphWrapper { public: typedef GraphWrapper Parent; protected: ForwardFilterMap* forward_filter; BackwardFilterMap* backward_filter; SubBidirGraphWrapper() : GraphWrapper() { } void setForwardFilterMap(ForwardFilterMap& _forward_filter) { forward_filter=&_forward_filter; } void setBackwardFilterMap(BackwardFilterMap& _backward_filter) { backward_filter=&_backward_filter; } public: SubBidirGraphWrapper(Graph& _graph, ForwardFilterMap& _forward_filter, BackwardFilterMap& _backward_filter) : GraphWrapper(_graph), forward_filter(&_forward_filter), backward_filter(&_backward_filter) { } SubBidirGraphWrapper(const SubBidirGraphWrapper& gw) : Parent(gw), forward_filter(gw.forward_filter), backward_filter(gw.backward_filter) { } class Edge; class OutEdgeIt; friend class Edge; friend class OutEdgeIt; template class EdgeMap; typedef typename GraphWrapper::Node Node; typedef typename Graph::Edge GraphEdge; /// SubBidirGraphWrapper<..., ..., ...>::Edge is inherited from /// Graph::Edge. It contains an extra bool flag which shows if the /// edge is the backward version of the original edge. class Edge : public Graph::Edge { friend class SubBidirGraphWrapper; template friend class EdgeMap; protected: bool backward; //true, iff backward public: Edge() { } /// \todo =false is needed, or causes problems? /// If \c _backward is false, then we get an edge corresponding to the /// original one, otherwise its oppositely directed pair is obtained. Edge(const typename Graph::Edge& e, bool _backward/*=false*/) : Graph::Edge(e), backward(_backward) { } Edge(Invalid i) : Graph::Edge(i), backward(true) { } //the unique invalid iterator // friend bool operator==(const Edge& u, const Edge& v) { // return (u.backward==v.backward && // static_cast(u)== // static_cast(v)); // } // friend bool operator!=(const Edge& u, const Edge& v) { // return (u.backward!=v.backward || // static_cast(u)!= // static_cast(v)); // } bool operator==(const Edge& v) const { return (this->backward==v.backward && static_cast(*this)== static_cast(v)); } bool operator!=(const Edge& v) const { return (this->backward!=v.backward || static_cast(*this)!= static_cast(v)); } }; class OutEdgeIt : public Edge { friend class SubBidirGraphWrapper; protected: const SubBidirGraphWrapper* gw; public: OutEdgeIt() { } OutEdgeIt(Invalid i) : Edge(i) { } //the unique invalid iterator OutEdgeIt(const SubBidirGraphWrapper& _gw, const Node& n) : Edge(typename Graph::OutEdgeIt(*(_gw.graph), n), false), gw(&_gw) { while (*static_cast(this)!=INVALID && !(*(gw->forward_filter))[*this]) *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); if (*static_cast(this)==INVALID) { *static_cast(this)= Edge(typename Graph::InEdgeIt(*(_gw.graph), n), true); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); } } OutEdgeIt(const SubBidirGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } OutEdgeIt& operator++() { if (!this->backward) { Node n=gw->tail(*this); *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->forward_filter))[*this]) *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); if (*static_cast(this)==INVALID) { *static_cast(this)= Edge(typename Graph::InEdgeIt(*(gw->graph), n), true); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); } } else { *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); } return *this; } }; class InEdgeIt : public Edge { friend class SubBidirGraphWrapper; protected: const SubBidirGraphWrapper* gw; public: InEdgeIt() { } InEdgeIt(Invalid i) : Edge(i) { } //the unique invalid iterator InEdgeIt(const SubBidirGraphWrapper& _gw, const Node& n) : Edge(typename Graph::InEdgeIt(*(_gw.graph), n), false), gw(&_gw) { while (*static_cast(this)!=INVALID && !(*(gw->forward_filter))[*this]) *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); if (*static_cast(this)==INVALID) { *static_cast(this)= Edge(typename Graph::OutEdgeIt(*(_gw.graph), n), true); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); } } InEdgeIt(const SubBidirGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } InEdgeIt& operator++() { if (!this->backward) { Node n=gw->tail(*this); *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->forward_filter))[*this]) *(static_cast(this))= ++(typename Graph::InEdgeIt(*(gw->graph), *this)); if (*static_cast(this)==INVALID) { *static_cast(this)= Edge(typename Graph::OutEdgeIt(*(gw->graph), n), true); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); } } else { *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); } return *this; } }; class EdgeIt : public Edge { friend class SubBidirGraphWrapper; protected: const SubBidirGraphWrapper* gw; public: EdgeIt() { } EdgeIt(Invalid i) : Edge(i) { } //the unique invalid iterator EdgeIt(const SubBidirGraphWrapper& _gw) : Edge(typename Graph::OutEdgeIt(*(_gw.graph)), false), gw(&_gw) { while (*static_cast(this)!=INVALID && !(*(gw->forward_filter))[*this]) *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); if (*static_cast(this)==INVALID) { *static_cast(this)= Edge(typename Graph::EdgeIt(*(_gw.graph)), true); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); } } EdgeIt(const SubBidirGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } EdgeIt& operator++() { if (!this->backward) { *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->forward_filter))[*this]) *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); if (*static_cast(this)==INVALID) { *static_cast(this)= Edge(typename Graph::EdgeIt(*(gw->graph)), true); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); } } else { *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); while (*static_cast(this)!=INVALID && !(*(gw->backward_filter))[*this]) *(static_cast(this))= ++(typename Graph::EdgeIt(*(gw->graph), *this)); } return *this; } }; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } // using GraphWrapper::next; // // NodeIt& next(NodeIt& n) const { GraphWrapper::next(n); return n; } // OutEdgeIt& next(OutEdgeIt& e) const { // if (!e.backward) { // Node v=this->graph->aNode(e.out); // this->graph->next(e.out); // while(this->graph->valid(e.out) && !(*forward_filter)[e]) { // this->graph->next(e.out); } // if (!this->graph->valid(e.out)) { // e.backward=true; // this->graph->first(e.in, v); // while(this->graph->valid(e.in) && !(*backward_filter)[e]) { // this->graph->next(e.in); } // } // } else { // this->graph->next(e.in); // while(this->graph->valid(e.in) && !(*backward_filter)[e]) { // this->graph->next(e.in); } // } // return e; // } // // FIXME Not tested // InEdgeIt& next(InEdgeIt& e) const { // if (!e.backward) { // Node v=this->graph->aNode(e.in); // this->graph->next(e.in); // while(this->graph->valid(e.in) && !(*forward_filter)[e]) { // this->graph->next(e.in); } // if (!this->graph->valid(e.in)) { // e.backward=true; // this->graph->first(e.out, v); // while(this->graph->valid(e.out) && !(*backward_filter)[e]) { // this->graph->next(e.out); } // } // } else { // this->graph->next(e.out); // while(this->graph->valid(e.out) && !(*backward_filter)[e]) { // this->graph->next(e.out); } // } // return e; // } // EdgeIt& next(EdgeIt& e) const { // if (!e.backward) { // this->graph->next(e.e); // while(this->graph->valid(e.e) && !(*forward_filter)[e]) { // this->graph->next(e.e); } // if (!this->graph->valid(e.e)) { // e.backward=true; // this->graph->first(e.e); // while(this->graph->valid(e.e) && !(*backward_filter)[e]) { // this->graph->next(e.e); } // } // } else { // this->graph->next(e.e); // while(this->graph->valid(e.e) && !(*backward_filter)[e]) { // this->graph->next(e.e); } // } // return e; // } Node tail(Edge e) const { return ((!e.backward) ? this->graph->tail(e) : this->graph->head(e)); } Node head(Edge e) const { return ((!e.backward) ? this->graph->head(e) : this->graph->tail(e)); } // Node aNode(OutEdgeIt e) const { // return ((!e.backward) ? this->graph->aNode(e.out) : // this->graph->aNode(e.in)); } // Node bNode(OutEdgeIt e) const { // return ((!e.backward) ? this->graph->bNode(e.out) : // this->graph->bNode(e.in)); } // Node aNode(InEdgeIt e) const { // return ((!e.backward) ? this->graph->aNode(e.in) : // this->graph->aNode(e.out)); } // Node bNode(InEdgeIt e) const { // return ((!e.backward) ? this->graph->bNode(e.in) : // this->graph->bNode(e.out)); } /// Gives back the opposite edge. Edge opposite(const Edge& e) const { Edge f=e; f.backward=!f.backward; return f; } /// \warning This is a linear time operation and works only if /// \c Graph::EdgeIt is defined. int edgeNum() const { int i=0; for (EdgeIt e(*this); e!=INVALID; ++e) ++i; return i; } bool forward(const Edge& e) const { return !e.backward; } bool backward(const Edge& e) const { return e.backward; } template /// \c SubBidirGraphWrapper<..., ..., ...>::EdgeMap contains two /// Graph::EdgeMap one for the forward edges and /// one for the backward edges. class EdgeMap { typename Graph::template EdgeMap forward_map, backward_map; public: typedef T ValueType; typedef Edge KeyType; EdgeMap(const SubBidirGraphWrapper& g) : forward_map(*(g.graph)), backward_map(*(g.graph)) { } EdgeMap(const SubBidirGraphWrapper& g, T a) : forward_map(*(g.graph), a), backward_map(*(g.graph), a) { } void set(Edge e, T a) { if (!e.backward) forward_map.set(e, a); else backward_map.set(e, a); } T operator[](Edge e) const { if (!e.backward) return forward_map[e]; else return backward_map[e]; } void update() { forward_map.update(); backward_map.update(); } // T get(Edge e) const { // if (e.out_or_in) // return forward_map.get(e.out); // else // return backward_map.get(e.in); // } }; }; ///\brief A wrapper for composing bidirected graph from a directed one. /// /// A wrapper for composing bidirected graph from a directed one. /// A bidirected graph is composed over the directed one without physical /// storage. As the oppositely directed edges are logically different ones /// the maps are able to attach different values for them. template class BidirGraphWrapper : public SubBidirGraphWrapper< Graph, ConstMap, ConstMap > { public: typedef SubBidirGraphWrapper< Graph, ConstMap, ConstMap > Parent; protected: ConstMap cm; BidirGraphWrapper() : Parent(), cm(true) { Parent::setForwardFilterMap(cm); Parent::setBackwardFilterMap(cm); } public: BidirGraphWrapper(Graph& _graph) : Parent() { Parent::setGraph(_graph); Parent::setForwardFilterMap(cm); Parent::setBackwardFilterMap(cm); } int edgeNum() const { return 2*this->graph->edgeNum(); } }; /// \brief A bidirected graph template. /// /// A bidirected graph template. /// Such a bidirected graph stores each pair of oppositely directed edges /// ones in the memory, i.e. a directed graph of type /// \c Graph is used for that. /// As the oppositely directed edges are logically different ones /// the maps are able to attach different values for them. /// \ingroup graphs template class BidirGraph : public BidirGraphWrapper { public: typedef UndirGraphWrapper Parent; protected: Graph gr; public: BidirGraph() : BidirGraphWrapper() { Parent::setGraph(gr); } }; template class ResForwardFilter { // const Graph* graph; const CapacityMap* capacity; const FlowMap* flow; public: ResForwardFilter(/*const Graph& _graph, */ const CapacityMap& _capacity, const FlowMap& _flow) : /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } //void setGraph(const Graph& _graph) { graph=&_graph; } void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } void setFlow(const FlowMap& _flow) { flow=&_flow; } bool operator[](const typename Graph::Edge& e) const { return (Number((*flow)[e]) < Number((*capacity)[e])); } }; template class ResBackwardFilter { //const Graph* graph; const CapacityMap* capacity; const FlowMap* flow; public: ResBackwardFilter(/*const Graph& _graph,*/ const CapacityMap& _capacity, const FlowMap& _flow) : /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } //void setGraph(const Graph& _graph) { graph=&_graph; } void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } void setFlow(const FlowMap& _flow) { flow=&_flow; } bool operator[](const typename Graph::Edge& e) const { return (Number(0) < Number((*flow)[e])); } }; /// A wrapper for composing the residual graph for directed flow and circulation problems. /// A wrapper for composing the residual graph for directed flow and circulation problems. template class ResGraphWrapper : public SubBidirGraphWrapper< Graph, ResForwardFilter, ResBackwardFilter > { public: typedef SubBidirGraphWrapper< Graph, ResForwardFilter, ResBackwardFilter > Parent; protected: const CapacityMap* capacity; FlowMap* flow; ResForwardFilter forward_filter; ResBackwardFilter backward_filter; ResGraphWrapper() : Parent(), capacity(0), flow(0) { } void setCapacityMap(const CapacityMap& _capacity) { capacity=&_capacity; forward_filter.setCapacity(_capacity); backward_filter.setCapacity(_capacity); } void setFlowMap(FlowMap& _flow) { flow=&_flow; forward_filter.setFlow(_flow); backward_filter.setFlow(_flow); } // /// \bug does graph reference needed in filtermaps?? // void setGraph(const Graph& _graph) { // Parent::setGraph(_graph); // forward_filter.setGraph(_graph); // backward_filter.setGraph(_graph); // } public: ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity, FlowMap& _flow) : Parent(), capacity(&_capacity), flow(&_flow), forward_filter(/*_graph,*/ _capacity, _flow), backward_filter(/*_graph,*/ _capacity, _flow) { Parent::setGraph(_graph); Parent::setForwardFilterMap(forward_filter); Parent::setBackwardFilterMap(backward_filter); } typedef typename Parent::Edge Edge; // bool forward(const Parent::Edge& e) const { return Parent::forward(e); } //bool backward(const Edge& e) const { return e.backward; } void augment(const Edge& e, Number a) const { if (Parent::forward(e)) // flow->set(e.out, flow->get(e.out)+a); flow->set(e, (*flow)[e]+a); else //flow->set(e.in, flow->get(e.in)-a); flow->set(e, (*flow)[e]-a); } /// \deprecated /// Number resCap(const Edge& e) const { if (Parent::forward(e)) // return (capacity->get(e.out)-flow->get(e.out)); return ((*capacity)[e]-(*flow)[e]); else // return (flow->get(e.in)); return ((*flow)[e]); } /// \brief Residual capacity map. /// /// In generic residual graphs the residual capacity can be obtained as a map. Not tested. class ResCap { protected: const ResGraphWrapper* res_graph; public: typedef Number ValueType; typedef Edge KeyType; ResCap(const ResGraphWrapper& _res_graph) : res_graph(&_res_graph) { } Number operator[](const Edge& e) const { if (res_graph->forward(e)) // return (capacity->get(e.out)-flow->get(e.out)); return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; else // return (flow->get(e.in)); return (*(res_graph->flow))[e]; } /// \bug not needed with dynamic maps, or does it? void update() { } }; }; /// For blocking flows. /// This graph wrapper is used for on-the-fly /// Dinits blocking flow computations. /// For each node, an out-edge is stored which is used when the /// \code /// OutEdgeIt& first(OutEdgeIt&, const Node&) /// \endcode /// is called. /// /// \author Marton Makai template class ErasingFirstGraphWrapper : public GraphWrapper { public: typedef GraphWrapper Parent; protected: FirstOutEdgesMap* first_out_edges; public: ErasingFirstGraphWrapper(Graph& _graph, FirstOutEdgesMap& _first_out_edges) : GraphWrapper(_graph), first_out_edges(&_first_out_edges) { } typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::Edge Edge; class OutEdgeIt : public Edge { friend class GraphWrapper; friend class ErasingFirstGraphWrapper; const ErasingFirstGraphWrapper* gw; public: OutEdgeIt() { } //OutEdgeIt(const OutEdgeIt& e) : Edge(e), gw(e.gw) { } OutEdgeIt(Invalid i) : Edge(i) { } OutEdgeIt(const ErasingFirstGraphWrapper& _gw, const Node& n) : Edge((*(_gw.first_out_edges))[n]), gw(&_gw) { } OutEdgeIt(const ErasingFirstGraphWrapper& _gw, const Edge& e) : Edge(e), gw(&_gw) { } OutEdgeIt& operator++() { *(static_cast(this))= ++(typename Graph::OutEdgeIt(*(gw->graph), *this)); return *this; } }; // class InEdgeIt { // friend class GraphWrapper; // friend class ErasingFirstGraphWrapper; // // typedef typename Graph::InEdgeIt GraphInEdgeIt; // typename Graph::InEdgeIt e; // public: // InEdgeIt() { } // InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } // InEdgeIt(const Invalid& i) : e(i) { } // InEdgeIt(const ErasingFirstGraphWrapper& _G, // const Node& _n) : // e(*(_G.graph), typename Graph::Node(_n)) { } // operator Edge() const { return Edge(typename Graph::Edge(e)); } // }; //typedef typename Graph::SymEdgeIt SymEdgeIt; // class EdgeIt { // friend class GraphWrapper; // friend class ErasingFirstGraphWrapper; // // typedef typename Graph::EdgeIt GraphEdgeIt; // typename Graph::EdgeIt e; // public: // EdgeIt() { } // EdgeIt(const typename Graph::EdgeIt& _e) : e(_e) { } // EdgeIt(const Invalid& i) : e(i) { } // EdgeIt(const ErasingFirstGraphWrapper& _G) : // e(*(_G.graph)) { } // operator Edge() const { return Edge(typename Graph::Edge(e)); } // }; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } // InEdgeIt& first(InEdgeIt& i, const Node& p) const { // i=InEdgeIt(*this, p); return i; // } // EdgeIt& first(EdgeIt& i) const { // i=EdgeIt(*this); return i; // } // using GraphWrapper::next; // // NodeIt& next(NodeIt& i) const { graph->next(i.n); return i; } // OutEdgeIt& next(OutEdgeIt& i) const { this->graph->next(i.e); return i; } // InEdgeIt& next(InEdgeIt& i) const { this->graph->next(i.e); return i; } // EdgeIt& next(EdgeIt& i) const { this->graph->next(i.e); return i; } // Node aNode(const OutEdgeIt& e) const { // return Node(this->graph->aNode(e.e)); } // Node aNode(const InEdgeIt& e) const { // return Node(this->graph->aNode(e.e)); } // Node bNode(const OutEdgeIt& e) const { // return Node(this->graph->bNode(e.e)); } // Node bNode(const InEdgeIt& e) const { // return Node(this->graph->bNode(e.e)); } void erase(const Edge& e) const { Node n=tail(e); typename Graph::OutEdgeIt f(*Parent::graph, n); ++f; first_out_edges->set(n, f); } }; ///@} } //namespace hugo #endif //HUGO_GRAPH_WRAPPER_H