[810] | 1 | // -*- c++ -*- // |
---|
| 2 | #ifndef HUGO_KRUSKAL_H |
---|
| 3 | #define HUGO_KRUSKAL_H |
---|
| 4 | |
---|
| 5 | #include <algorithm> |
---|
| 6 | #include <hugo/unionfind.h> |
---|
| 7 | |
---|
| 8 | /** |
---|
| 9 | @defgroup spantree Minimum Cost Spanning Tree Algorithms |
---|
| 10 | @ingroup galgs |
---|
| 11 | \brief This group containes the algorithms for finding a minimum cost spanning |
---|
| 12 | tree in a graph |
---|
| 13 | |
---|
| 14 | This group containes the algorithms for finding a minimum cost spanning |
---|
| 15 | tree in a graph |
---|
| 16 | */ |
---|
| 17 | |
---|
| 18 | ///\ingroup spantree |
---|
| 19 | ///\file |
---|
| 20 | ///\brief Kruskal's algorithm to compute a minimum cost tree |
---|
| 21 | /// |
---|
| 22 | ///Kruskal's algorithm to compute a minimum cost tree. |
---|
| 23 | |
---|
[824] | 24 | ///\weakgroup spantree |
---|
[810] | 25 | namespace hugo { |
---|
| 26 | |
---|
| 27 | /// \addtogroup spantree |
---|
| 28 | /// @{ |
---|
| 29 | |
---|
| 30 | /// Kruskal's algorithm to find a minimum cost tree of a graph. |
---|
| 31 | |
---|
| 32 | /// This function runs Kruskal's algorithm to find a minimum cost tree. |
---|
| 33 | /// \param G The graph the algorithm runs on. The algorithm considers the |
---|
| 34 | /// graph to be undirected, the direction of the edges are not used. |
---|
| 35 | /// |
---|
| 36 | /// \param in This object is used to describe the edge costs. It must |
---|
| 37 | /// be an STL compatible 'Forward Container' |
---|
[824] | 38 | /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, |
---|
[810] | 39 | /// where X is the type of the costs. It must contain every edge in |
---|
| 40 | /// cost-ascending order. |
---|
| 41 | ///\par |
---|
| 42 | /// For the sake of simplicity, there is a helper class KruskalMapInput, |
---|
| 43 | /// which converts a |
---|
| 44 | /// simple edge map to an input of this form. Alternatively, you can use |
---|
| 45 | /// the function \ref kruskalEdgeMap to compute the minimum cost tree if |
---|
| 46 | /// the edge costs are given by an edge map. |
---|
| 47 | /// |
---|
| 48 | /// \retval out This must be a writable \c bool edge map. |
---|
| 49 | /// After running the algorithm |
---|
| 50 | /// this will contain the found minimum cost spanning tree: the value of an |
---|
| 51 | /// edge will be set to \c true if it belongs to the tree, otherwise it will |
---|
| 52 | /// be set to \c false. The value of each edge will be set exactly once. |
---|
| 53 | /// |
---|
| 54 | /// \return The cost of the found tree. |
---|
| 55 | |
---|
[824] | 56 | template <class GR, class IN, class OUT> |
---|
| 57 | typename IN::value_type::second_type |
---|
| 58 | kruskal(GR const& G, IN const& in, |
---|
| 59 | OUT& out) |
---|
[810] | 60 | { |
---|
[824] | 61 | typedef typename IN::value_type::second_type EdgeCost; |
---|
| 62 | typedef typename GR::template NodeMap<int> NodeIntMap; |
---|
| 63 | typedef typename GR::Node Node; |
---|
[810] | 64 | |
---|
| 65 | NodeIntMap comp(G, -1); |
---|
| 66 | UnionFind<Node,NodeIntMap> uf(comp); |
---|
| 67 | |
---|
| 68 | EdgeCost tot_cost = 0; |
---|
[824] | 69 | for (typename IN::const_iterator p = in.begin(); |
---|
[810] | 70 | p!=in.end(); ++p ) { |
---|
| 71 | if ( uf.join(G.head((*p).first), |
---|
| 72 | G.tail((*p).first)) ) { |
---|
| 73 | out.set((*p).first, true); |
---|
| 74 | tot_cost += (*p).second; |
---|
| 75 | } |
---|
| 76 | else { |
---|
| 77 | out.set((*p).first, false); |
---|
| 78 | } |
---|
| 79 | } |
---|
| 80 | return tot_cost; |
---|
| 81 | } |
---|
| 82 | |
---|
| 83 | /* A work-around for running Kruskal with const-reference bool maps... */ |
---|
| 84 | |
---|
[812] | 85 | ///\bug What is this? Or why doesn't it work? |
---|
[810] | 86 | /// |
---|
[824] | 87 | template<class Map> |
---|
[810] | 88 | class NonConstMapWr { |
---|
| 89 | const Map &m; |
---|
| 90 | public: |
---|
| 91 | typedef typename Map::ValueType ValueType; |
---|
| 92 | |
---|
| 93 | NonConstMapWr(const Map &_m) : m(_m) {} |
---|
| 94 | |
---|
[824] | 95 | template<class KeyType> |
---|
[810] | 96 | void set(KeyType const& k, ValueType const &v) const { m.set(k,v); } |
---|
| 97 | }; |
---|
| 98 | |
---|
[824] | 99 | template <class GR, class IN, class OUT> |
---|
[810] | 100 | inline |
---|
[824] | 101 | typename IN::ValueType |
---|
| 102 | kruskal(GR const& G, IN const& edges, |
---|
| 103 | OUT const& out_map) |
---|
[810] | 104 | { |
---|
[824] | 105 | NonConstMapWr<OUT> map_wr(out_map); |
---|
[810] | 106 | return kruskal(G, edges, map_wr); |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | /* ** ** Input-objects ** ** */ |
---|
| 110 | |
---|
| 111 | /// Kruskal input source. |
---|
| 112 | |
---|
| 113 | /// Kruskal input source. |
---|
| 114 | /// |
---|
| 115 | /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead. |
---|
| 116 | /// |
---|
| 117 | /// \sa makeKruskalMapInput() |
---|
| 118 | /// |
---|
[824] | 119 | ///\param GR The type of the graph the algorithm runs on. |
---|
[810] | 120 | ///\param Map An edge map containing the cost of the edges. |
---|
| 121 | ///\par |
---|
| 122 | ///The cost type can be any type satisfying |
---|
| 123 | ///the STL 'LessThan comparable' |
---|
| 124 | ///concept if it also has an operator+() implemented. (It is necessary for |
---|
| 125 | ///computing the total cost of the tree). |
---|
| 126 | /// |
---|
[824] | 127 | template<class GR, class Map> |
---|
[810] | 128 | class KruskalMapInput |
---|
[824] | 129 | : public std::vector< std::pair<typename GR::Edge, |
---|
[810] | 130 | typename Map::ValueType> > { |
---|
| 131 | |
---|
| 132 | public: |
---|
[824] | 133 | typedef std::vector< std::pair<typename GR::Edge, |
---|
[810] | 134 | typename Map::ValueType> > Parent; |
---|
| 135 | typedef typename Parent::value_type value_type; |
---|
| 136 | |
---|
| 137 | private: |
---|
| 138 | class comparePair { |
---|
| 139 | public: |
---|
| 140 | bool operator()(const value_type& a, |
---|
| 141 | const value_type& b) { |
---|
| 142 | return a.second < b.second; |
---|
| 143 | } |
---|
| 144 | }; |
---|
| 145 | |
---|
| 146 | public: |
---|
| 147 | |
---|
| 148 | void sort() { |
---|
| 149 | std::sort(this->begin(), this->end(), comparePair()); |
---|
| 150 | } |
---|
| 151 | |
---|
[824] | 152 | KruskalMapInput(GR const& G, Map const& m) { |
---|
| 153 | typedef typename GR::EdgeIt EdgeIt; |
---|
[810] | 154 | |
---|
| 155 | this->clear(); |
---|
| 156 | for(EdgeIt e(G);e!=INVALID;++e) push_back(make_pair(e, m[e])); |
---|
| 157 | sort(); |
---|
| 158 | } |
---|
| 159 | }; |
---|
| 160 | |
---|
| 161 | /// Creates a KruskalMapInput object for \ref kruskal() |
---|
| 162 | |
---|
| 163 | /// It makes is easier to use |
---|
| 164 | /// \ref KruskalMapInput by making it unnecessary |
---|
| 165 | /// to explicitly give the type of the parameters. |
---|
| 166 | /// |
---|
| 167 | /// In most cases you possibly |
---|
| 168 | /// want to use the function kruskalEdgeMap() instead. |
---|
| 169 | /// |
---|
| 170 | ///\param G The type of the graph the algorithm runs on. |
---|
| 171 | ///\param m An edge map containing the cost of the edges. |
---|
| 172 | ///\par |
---|
| 173 | ///The cost type can be any type satisfying the |
---|
| 174 | ///STL 'LessThan Comparable' |
---|
| 175 | ///concept if it also has an operator+() implemented. (It is necessary for |
---|
| 176 | ///computing the total cost of the tree). |
---|
| 177 | /// |
---|
| 178 | ///\return An appropriate input source for \ref kruskal(). |
---|
| 179 | /// |
---|
[824] | 180 | template<class GR, class Map> |
---|
[810] | 181 | inline |
---|
[824] | 182 | KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m) |
---|
[810] | 183 | { |
---|
[824] | 184 | return KruskalMapInput<GR,Map>(G,m); |
---|
[810] | 185 | } |
---|
| 186 | |
---|
| 187 | |
---|
| 188 | /* ** ** Output-objects: simple writable bool maps** ** */ |
---|
| 189 | |
---|
| 190 | /// A writable bool-map that makes a sequence of "true" keys |
---|
| 191 | |
---|
| 192 | /// A writable bool-map that creates a sequence out of keys that receives |
---|
| 193 | /// the value "true". |
---|
| 194 | /// \warning Not a regular property map, as it doesn't know its KeyType |
---|
| 195 | /// \bug Missing documentation. |
---|
| 196 | /// \todo This class may be of wider usage, therefore it could move to |
---|
| 197 | /// <tt>maps.h</tt> |
---|
[824] | 198 | template<class Iterator> |
---|
[810] | 199 | class SequenceOutput { |
---|
| 200 | mutable Iterator it; |
---|
| 201 | |
---|
| 202 | public: |
---|
| 203 | typedef bool ValueType; |
---|
| 204 | |
---|
| 205 | SequenceOutput(Iterator const &_it) : it(_it) {} |
---|
| 206 | |
---|
| 207 | template<typename KeyType> |
---|
| 208 | void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} } |
---|
| 209 | }; |
---|
| 210 | |
---|
[824] | 211 | template<class Iterator> |
---|
[810] | 212 | inline |
---|
| 213 | SequenceOutput<Iterator> |
---|
| 214 | makeSequenceOutput(Iterator it) { |
---|
| 215 | return SequenceOutput<Iterator>(it); |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | /* ** ** Wrapper funtions ** ** */ |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | /// \brief Wrapper function to kruskal(). |
---|
| 222 | /// Input is from an edge map, output is a plain bool map. |
---|
| 223 | /// |
---|
| 224 | /// Wrapper function to kruskal(). |
---|
| 225 | /// Input is from an edge map, output is a plain bool map. |
---|
| 226 | /// |
---|
| 227 | ///\param G The type of the graph the algorithm runs on. |
---|
| 228 | ///\param in An edge map containing the cost of the edges. |
---|
| 229 | ///\par |
---|
| 230 | ///The cost type can be any type satisfying the |
---|
| 231 | ///STL 'LessThan Comparable' |
---|
| 232 | ///concept if it also has an operator+() implemented. (It is necessary for |
---|
| 233 | ///computing the total cost of the tree). |
---|
| 234 | /// |
---|
| 235 | /// \retval out This must be a writable \c bool edge map. |
---|
| 236 | /// After running the algorithm |
---|
| 237 | /// this will contain the found minimum cost spanning tree: the value of an |
---|
| 238 | /// edge will be set to \c true if it belongs to the tree, otherwise it will |
---|
| 239 | /// be set to \c false. The value of each edge will be set exactly once. |
---|
| 240 | /// |
---|
| 241 | /// \return The cost of the found tree. |
---|
| 242 | |
---|
| 243 | |
---|
[824] | 244 | template <class GR, class IN, class RET> |
---|
[810] | 245 | inline |
---|
[824] | 246 | typename IN::ValueType |
---|
| 247 | kruskalEdgeMap(GR const& G, |
---|
| 248 | IN const& in, |
---|
| 249 | RET &out) { |
---|
[810] | 250 | return kruskal(G, |
---|
[824] | 251 | KruskalMapInput<GR,IN>(G,in), |
---|
[810] | 252 | out); |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | /// \brief Wrapper function to kruskal(). |
---|
| 256 | /// Input is from an edge map, output is an STL Sequence. |
---|
| 257 | /// |
---|
| 258 | /// Wrapper function to kruskal(). |
---|
| 259 | /// Input is from an edge map, output is an STL Sequence. |
---|
| 260 | /// |
---|
| 261 | ///\param G The type of the graph the algorithm runs on. |
---|
| 262 | ///\param in An edge map containing the cost of the edges. |
---|
| 263 | ///\par |
---|
| 264 | ///The cost type can be any type satisfying the |
---|
| 265 | ///STL 'LessThan Comparable' |
---|
| 266 | ///concept if it also has an operator+() implemented. (It is necessary for |
---|
| 267 | ///computing the total cost of the tree). |
---|
| 268 | /// |
---|
| 269 | /// \retval out This must be an iteraror of an STL Container with |
---|
[824] | 270 | /// <tt>GR::Edge</tt> as its <tt>value_type</tt>. |
---|
[810] | 271 | /// The algorithm copies the elements of the found tree into this sequence. |
---|
| 272 | /// For example, if we know that the spanning tree of the graph \c G has |
---|
| 273 | /// say 53 edges then |
---|
[824] | 274 | /// we can put its edges into a STL vector \c tree with a code like this. |
---|
[810] | 275 | /// \code |
---|
| 276 | /// std::vector<Edge> tree(53); |
---|
| 277 | /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin()); |
---|
| 278 | /// \endcode |
---|
| 279 | /// Or if we don't know in advance the size of the tree, we can write this. |
---|
| 280 | /// \code |
---|
| 281 | /// std::vector<Edge> tree; |
---|
| 282 | /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree)); |
---|
| 283 | /// \endcode |
---|
| 284 | /// |
---|
| 285 | /// \return The cost of the found tree. |
---|
| 286 | /// |
---|
| 287 | /// \bug its name does not follow the coding style. |
---|
[824] | 288 | template <class GR, class IN, class RET> |
---|
[810] | 289 | inline |
---|
[824] | 290 | typename IN::ValueType |
---|
| 291 | kruskalEdgeMap_IteratorOut(const GR& G, |
---|
| 292 | const IN& in, |
---|
| 293 | RET out) |
---|
[810] | 294 | { |
---|
[824] | 295 | SequenceOutput<RET> _out(out); |
---|
[810] | 296 | return kruskal(G, |
---|
[824] | 297 | KruskalMapInput<GR,IN>(G, in), |
---|
[810] | 298 | _out); |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | /// @} |
---|
| 302 | |
---|
| 303 | } //namespace hugo |
---|
| 304 | |
---|
| 305 | #endif //HUGO_KRUSKAL_H |
---|