COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/hugo/kruskal.h @ 896:3a98a1aa5a8f

Last change on this file since 896:3a98a1aa5a8f was 885:5e59c44b6ba2, checked in by Mihaly Barasz, 20 years ago

Kruskal cleanup:

File size: 10.1 KB
Line 
1// -*- c++ -*- //
2#ifndef HUGO_KRUSKAL_H
3#define HUGO_KRUSKAL_H
4
5#include <algorithm>
6#include <hugo/unionfind.h>
7
8/**
9@defgroup spantree Minimum Cost Spanning Tree Algorithms
10@ingroup galgs
11\brief This group containes the algorithms for finding a minimum cost spanning
12tree in a graph
13
14This group containes the algorithms for finding a minimum cost spanning
15tree in a graph
16*/
17
18///\ingroup spantree
19///\file
20///\brief Kruskal's algorithm to compute a minimum cost tree
21///
22///Kruskal's algorithm to compute a minimum cost tree.
23
24namespace hugo {
25
26  /// \addtogroup spantree
27  /// @{
28
29  /// Kruskal's algorithm to find a minimum cost tree of a graph.
30
31  /// This function runs Kruskal's algorithm to find a minimum cost tree.
32  /// \param G The graph the algorithm runs on. The algorithm considers the
33  /// graph to be undirected, the direction of the edges are not used.
34  ///
35  /// \param in This object is used to describe the edge costs. It must
36  /// be an STL compatible 'Forward Container'
37  /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
38  /// where X is the type of the costs. It must contain every edge in
39  /// cost-ascending order.
40  ///\par
41  /// For the sake of simplicity, there is a helper class KruskalMapInput,
42  /// which converts a
43  /// simple edge map to an input of this form. Alternatively, you can use
44  /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
45  /// the edge costs are given by an edge map.
46  ///
47  /// \retval out This must be a writable \c bool edge map.
48  /// After running the algorithm
49  /// this will contain the found minimum cost spanning tree: the value of an
50  /// edge will be set to \c true if it belongs to the tree, otherwise it will
51  /// be set to \c false. The value of each edge will be set exactly once.
52  ///
53  /// \return The cost of the found tree.
54
55  template <class GR, class IN, class OUT>
56  typename IN::value_type::second_type
57  kruskal(GR const& G, IN const& in,
58                 OUT& out)
59  {
60    typedef typename IN::value_type::second_type EdgeCost;
61    typedef typename GR::template NodeMap<int> NodeIntMap;
62    typedef typename GR::Node Node;
63
64    NodeIntMap comp(G, -1);
65    UnionFind<Node,NodeIntMap> uf(comp);
66     
67    EdgeCost tot_cost = 0;
68    for (typename IN::const_iterator p = in.begin();
69         p!=in.end(); ++p ) {
70      if ( uf.join(G.head((*p).first),
71                   G.tail((*p).first)) ) {
72        out.set((*p).first, true);
73        tot_cost += (*p).second;
74      }
75      else {
76        out.set((*p).first, false);
77      }
78    }
79    return tot_cost;
80  }
81
82  /* A work-around for running Kruskal with const-reference bool maps... */
83
84  /// Helper class for calling kruskal with "constant" output map.
85
86  /// Helper class for calling kruskal with output maps constructed
87  /// on-the-fly.
88  ///
89  /// A typical examle is the following call:
90  /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>.
91  /// Here, the third argument is a temporary object (which wraps around an
92  /// iterator with a writable bool map interface), and thus by rules of C++
93  /// is a \c const object. To enable call like this exist this class and
94  /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
95  /// third argument.
96  template<class Map>
97  class NonConstMapWr {
98    const Map &m;
99  public:
100    typedef typename Map::ValueType ValueType;
101
102    NonConstMapWr(const Map &_m) : m(_m) {}
103
104    template<class KeyType>
105    void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
106  };
107
108  template <class GR, class IN, class OUT>
109  inline
110  typename IN::value_type::second_type
111  kruskal(GR const& G, IN const& edges, OUT const& out_map)
112  {
113    NonConstMapWr<OUT> map_wr(out_map);
114    return kruskal(G, edges, map_wr);
115  } 
116
117  /* ** ** Input-objects ** ** */
118
119  /// Kruskal input source.
120
121  /// Kruskal input source.
122  ///
123  /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
124  ///
125  /// \sa makeKruskalMapInput()
126  ///
127  ///\param GR The type of the graph the algorithm runs on.
128  ///\param Map An edge map containing the cost of the edges.
129  ///\par
130  ///The cost type can be any type satisfying
131  ///the STL 'LessThan comparable'
132  ///concept if it also has an operator+() implemented. (It is necessary for
133  ///computing the total cost of the tree).
134  ///
135  template<class GR, class Map>
136  class KruskalMapInput
137    : public std::vector< std::pair<typename GR::Edge,
138                                    typename Map::ValueType> > {
139   
140  public:
141    typedef std::vector< std::pair<typename GR::Edge,
142                                   typename Map::ValueType> > Parent;
143    typedef typename Parent::value_type value_type;
144
145  private:
146    class comparePair {
147    public:
148      bool operator()(const value_type& a,
149                      const value_type& b) {
150        return a.second < b.second;
151      }
152    };
153
154  public:
155
156    void sort() {
157      std::sort(this->begin(), this->end(), comparePair());
158    }
159
160    KruskalMapInput(GR const& G, Map const& m) {
161      typedef typename GR::EdgeIt EdgeIt;
162     
163      for(EdgeIt e(G);e!=INVALID;++e) push_back(value_type(e, m[e]));
164      sort();
165    }
166  };
167
168  /// Creates a KruskalMapInput object for \ref kruskal()
169
170  /// It makes is easier to use
171  /// \ref KruskalMapInput by making it unnecessary
172  /// to explicitly give the type of the parameters.
173  ///
174  /// In most cases you possibly
175  /// want to use the function kruskalEdgeMap() instead.
176  ///
177  ///\param G The type of the graph the algorithm runs on.
178  ///\param m An edge map containing the cost of the edges.
179  ///\par
180  ///The cost type can be any type satisfying the
181  ///STL 'LessThan Comparable'
182  ///concept if it also has an operator+() implemented. (It is necessary for
183  ///computing the total cost of the tree).
184  ///
185  ///\return An appropriate input source for \ref kruskal().
186  ///
187  template<class GR, class Map>
188  inline
189  KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
190  {
191    return KruskalMapInput<GR,Map>(G,m);
192  }
193 
194 
195
196  /* ** ** Output-objects: simple writable bool maps ** ** */
197 
198
199
200  /// A writable bool-map that makes a sequence of "true" keys
201
202  /// A writable bool-map that creates a sequence out of keys that receives
203  /// the value "true".
204  ///
205  /// \sa makeKruskalSequenceOutput()
206  ///
207  /// Very often, when looking for a min cost spanning tree, we want as
208  /// output a container containing the edges of the found tree. For this
209  /// purpose exist this class that wraps around an STL iterator with a
210  /// writable bool map interface. When a key gets value "true" this key
211  /// is added to sequence pointed by the iterator.
212  ///
213  /// A typical usage:
214  /// \code
215  /// std::vector<Graph::Edge> v;
216  /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
217  /// \endcode
218  ///
219  /// For the most common case, when the input is given by a simple edge
220  /// map and the output is a sequence of the tree edges, a special
221  /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
222  ///
223  /// \warning Not a regular property map, as it doesn't know its KeyType
224
225  template<class Iterator>
226  class KruskalSequenceOutput {
227    mutable Iterator it;
228
229  public:
230    typedef bool ValueType;
231
232    KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
233
234    template<typename KeyType>
235    void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
236  };
237
238  template<class Iterator>
239  inline
240  KruskalSequenceOutput<Iterator>
241  makeKruskalSequenceOutput(Iterator it) {
242    return KruskalSequenceOutput<Iterator>(it);
243  }
244
245
246
247  /* ** ** Wrapper funtions ** ** */
248
249
250
251  /// \brief Wrapper function to kruskal().
252  /// Input is from an edge map, output is a plain bool map.
253  ///
254  /// Wrapper function to kruskal().
255  /// Input is from an edge map, output is a plain bool map.
256  ///
257  ///\param G The type of the graph the algorithm runs on.
258  ///\param in An edge map containing the cost of the edges.
259  ///\par
260  ///The cost type can be any type satisfying the
261  ///STL 'LessThan Comparable'
262  ///concept if it also has an operator+() implemented. (It is necessary for
263  ///computing the total cost of the tree).
264  ///
265  /// \retval out This must be a writable \c bool edge map.
266  /// After running the algorithm
267  /// this will contain the found minimum cost spanning tree: the value of an
268  /// edge will be set to \c true if it belongs to the tree, otherwise it will
269  /// be set to \c false. The value of each edge will be set exactly once.
270  ///
271  /// \return The cost of the found tree.
272
273  template <class GR, class IN, class RET>
274  inline
275  typename IN::ValueType
276  kruskalEdgeMap(GR const& G,
277                 IN const& in,
278                 RET &out) {
279    return kruskal(G,
280                   KruskalMapInput<GR,IN>(G,in),
281                   out);
282  }
283
284  /// \brief Wrapper function to kruskal().
285  /// Input is from an edge map, output is an STL Sequence.
286  ///
287  /// Wrapper function to kruskal().
288  /// Input is from an edge map, output is an STL Sequence.
289  ///
290  ///\param G The type of the graph the algorithm runs on.
291  ///\param in An edge map containing the cost of the edges.
292  ///\par
293  ///The cost type can be any type satisfying the
294  ///STL 'LessThan Comparable'
295  ///concept if it also has an operator+() implemented. (It is necessary for
296  ///computing the total cost of the tree).
297  ///
298  /// \retval out This must be an iteraror of an STL Container with
299  /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
300  /// The algorithm copies the elements of the found tree into this sequence.
301  /// For example, if we know that the spanning tree of the graph \c G has
302  /// say 53 edges then
303  /// we can put its edges into a STL vector \c tree with a code like this.
304  /// \code
305  /// std::vector<Edge> tree(53);
306  /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
307  /// \endcode
308  /// Or if we don't know in advance the size of the tree, we can write this.
309  /// \code
310  /// std::vector<Edge> tree;
311  /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
312  /// \endcode
313  ///
314  /// \return The cost of the found tree.
315  ///
316  /// \bug its name does not follow the coding style.
317
318  template <class GR, class IN, class RET>
319  inline
320  typename IN::ValueType
321  kruskalEdgeMap_IteratorOut(const GR& G,
322                             const IN& in,
323                             RET out)
324  {
325    KruskalSequenceOutput<RET> _out(out);
326    return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out);
327  }
328
329  /// @}
330
331} //namespace hugo
332
333#endif //HUGO_KRUSKAL_H
Note: See TracBrowser for help on using the repository browser.