1 | // -*- c++ -*- // |
---|
2 | #ifndef HUGO_KRUSKAL_H |
---|
3 | #define HUGO_KRUSKAL_H |
---|
4 | |
---|
5 | #include <algorithm> |
---|
6 | #include <hugo/unionfind.h> |
---|
7 | |
---|
8 | /** |
---|
9 | @defgroup spantree Minimum Cost Spanning Tree Algorithms |
---|
10 | @ingroup galgs |
---|
11 | \brief This group containes the algorithms for finding a minimum cost spanning |
---|
12 | tree in a graph |
---|
13 | |
---|
14 | This group containes the algorithms for finding a minimum cost spanning |
---|
15 | tree in a graph |
---|
16 | */ |
---|
17 | |
---|
18 | ///\ingroup spantree |
---|
19 | ///\file |
---|
20 | ///\brief Kruskal's algorithm to compute a minimum cost tree |
---|
21 | /// |
---|
22 | ///Kruskal's algorithm to compute a minimum cost tree. |
---|
23 | |
---|
24 | namespace hugo { |
---|
25 | |
---|
26 | /// \addtogroup spantree |
---|
27 | /// @{ |
---|
28 | |
---|
29 | /// Kruskal's algorithm to find a minimum cost tree of a graph. |
---|
30 | |
---|
31 | /// This function runs Kruskal's algorithm to find a minimum cost tree. |
---|
32 | /// \param G The graph the algorithm runs on. The algorithm considers the |
---|
33 | /// graph to be undirected, the direction of the edges are not used. |
---|
34 | /// |
---|
35 | /// \param in This object is used to describe the edge costs. It must |
---|
36 | /// be an STL compatible 'Forward Container' |
---|
37 | /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, |
---|
38 | /// where X is the type of the costs. It must contain every edge in |
---|
39 | /// cost-ascending order. |
---|
40 | ///\par |
---|
41 | /// For the sake of simplicity, there is a helper class KruskalMapInput, |
---|
42 | /// which converts a |
---|
43 | /// simple edge map to an input of this form. Alternatively, you can use |
---|
44 | /// the function \ref kruskalEdgeMap to compute the minimum cost tree if |
---|
45 | /// the edge costs are given by an edge map. |
---|
46 | /// |
---|
47 | /// \retval out This must be a writable \c bool edge map. |
---|
48 | /// After running the algorithm |
---|
49 | /// this will contain the found minimum cost spanning tree: the value of an |
---|
50 | /// edge will be set to \c true if it belongs to the tree, otherwise it will |
---|
51 | /// be set to \c false. The value of each edge will be set exactly once. |
---|
52 | /// |
---|
53 | /// \return The cost of the found tree. |
---|
54 | |
---|
55 | template <class GR, class IN, class OUT> |
---|
56 | typename IN::value_type::second_type |
---|
57 | kruskal(GR const& G, IN const& in, |
---|
58 | OUT& out) |
---|
59 | { |
---|
60 | typedef typename IN::value_type::second_type EdgeCost; |
---|
61 | typedef typename GR::template NodeMap<int> NodeIntMap; |
---|
62 | typedef typename GR::Node Node; |
---|
63 | |
---|
64 | NodeIntMap comp(G, -1); |
---|
65 | UnionFind<Node,NodeIntMap> uf(comp); |
---|
66 | |
---|
67 | EdgeCost tot_cost = 0; |
---|
68 | for (typename IN::const_iterator p = in.begin(); |
---|
69 | p!=in.end(); ++p ) { |
---|
70 | if ( uf.join(G.head((*p).first), |
---|
71 | G.tail((*p).first)) ) { |
---|
72 | out.set((*p).first, true); |
---|
73 | tot_cost += (*p).second; |
---|
74 | } |
---|
75 | else { |
---|
76 | out.set((*p).first, false); |
---|
77 | } |
---|
78 | } |
---|
79 | return tot_cost; |
---|
80 | } |
---|
81 | |
---|
82 | /* A work-around for running Kruskal with const-reference bool maps... */ |
---|
83 | |
---|
84 | /// Helper class for calling kruskal with "constant" output map. |
---|
85 | |
---|
86 | /// Helper class for calling kruskal with output maps constructed |
---|
87 | /// on-the-fly. |
---|
88 | /// |
---|
89 | /// A typical examle is the following call: |
---|
90 | /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>. |
---|
91 | /// Here, the third argument is a temporary object (which wraps around an |
---|
92 | /// iterator with a writable bool map interface), and thus by rules of C++ |
---|
93 | /// is a \c const object. To enable call like this exist this class and |
---|
94 | /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt> |
---|
95 | /// third argument. |
---|
96 | template<class Map> |
---|
97 | class NonConstMapWr { |
---|
98 | const Map &m; |
---|
99 | public: |
---|
100 | typedef typename Map::ValueType ValueType; |
---|
101 | |
---|
102 | NonConstMapWr(const Map &_m) : m(_m) {} |
---|
103 | |
---|
104 | template<class KeyType> |
---|
105 | void set(KeyType const& k, ValueType const &v) const { m.set(k,v); } |
---|
106 | }; |
---|
107 | |
---|
108 | template <class GR, class IN, class OUT> |
---|
109 | inline |
---|
110 | typename IN::value_type::second_type |
---|
111 | kruskal(GR const& G, IN const& edges, OUT const& out_map) |
---|
112 | { |
---|
113 | NonConstMapWr<OUT> map_wr(out_map); |
---|
114 | return kruskal(G, edges, map_wr); |
---|
115 | } |
---|
116 | |
---|
117 | /* ** ** Input-objects ** ** */ |
---|
118 | |
---|
119 | /// Kruskal input source. |
---|
120 | |
---|
121 | /// Kruskal input source. |
---|
122 | /// |
---|
123 | /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead. |
---|
124 | /// |
---|
125 | /// \sa makeKruskalMapInput() |
---|
126 | /// |
---|
127 | ///\param GR The type of the graph the algorithm runs on. |
---|
128 | ///\param Map An edge map containing the cost of the edges. |
---|
129 | ///\par |
---|
130 | ///The cost type can be any type satisfying |
---|
131 | ///the STL 'LessThan comparable' |
---|
132 | ///concept if it also has an operator+() implemented. (It is necessary for |
---|
133 | ///computing the total cost of the tree). |
---|
134 | /// |
---|
135 | template<class GR, class Map> |
---|
136 | class KruskalMapInput |
---|
137 | : public std::vector< std::pair<typename GR::Edge, |
---|
138 | typename Map::ValueType> > { |
---|
139 | |
---|
140 | public: |
---|
141 | typedef std::vector< std::pair<typename GR::Edge, |
---|
142 | typename Map::ValueType> > Parent; |
---|
143 | typedef typename Parent::value_type value_type; |
---|
144 | |
---|
145 | private: |
---|
146 | class comparePair { |
---|
147 | public: |
---|
148 | bool operator()(const value_type& a, |
---|
149 | const value_type& b) { |
---|
150 | return a.second < b.second; |
---|
151 | } |
---|
152 | }; |
---|
153 | |
---|
154 | public: |
---|
155 | |
---|
156 | void sort() { |
---|
157 | std::sort(this->begin(), this->end(), comparePair()); |
---|
158 | } |
---|
159 | |
---|
160 | KruskalMapInput(GR const& G, Map const& m) { |
---|
161 | typedef typename GR::EdgeIt EdgeIt; |
---|
162 | |
---|
163 | for(EdgeIt e(G);e!=INVALID;++e) push_back(value_type(e, m[e])); |
---|
164 | sort(); |
---|
165 | } |
---|
166 | }; |
---|
167 | |
---|
168 | /// Creates a KruskalMapInput object for \ref kruskal() |
---|
169 | |
---|
170 | /// It makes is easier to use |
---|
171 | /// \ref KruskalMapInput by making it unnecessary |
---|
172 | /// to explicitly give the type of the parameters. |
---|
173 | /// |
---|
174 | /// In most cases you possibly |
---|
175 | /// want to use the function kruskalEdgeMap() instead. |
---|
176 | /// |
---|
177 | ///\param G The type of the graph the algorithm runs on. |
---|
178 | ///\param m An edge map containing the cost of the edges. |
---|
179 | ///\par |
---|
180 | ///The cost type can be any type satisfying the |
---|
181 | ///STL 'LessThan Comparable' |
---|
182 | ///concept if it also has an operator+() implemented. (It is necessary for |
---|
183 | ///computing the total cost of the tree). |
---|
184 | /// |
---|
185 | ///\return An appropriate input source for \ref kruskal(). |
---|
186 | /// |
---|
187 | template<class GR, class Map> |
---|
188 | inline |
---|
189 | KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m) |
---|
190 | { |
---|
191 | return KruskalMapInput<GR,Map>(G,m); |
---|
192 | } |
---|
193 | |
---|
194 | |
---|
195 | |
---|
196 | /* ** ** Output-objects: simple writable bool maps ** ** */ |
---|
197 | |
---|
198 | |
---|
199 | |
---|
200 | /// A writable bool-map that makes a sequence of "true" keys |
---|
201 | |
---|
202 | /// A writable bool-map that creates a sequence out of keys that receives |
---|
203 | /// the value "true". |
---|
204 | /// |
---|
205 | /// \sa makeKruskalSequenceOutput() |
---|
206 | /// |
---|
207 | /// Very often, when looking for a min cost spanning tree, we want as |
---|
208 | /// output a container containing the edges of the found tree. For this |
---|
209 | /// purpose exist this class that wraps around an STL iterator with a |
---|
210 | /// writable bool map interface. When a key gets value "true" this key |
---|
211 | /// is added to sequence pointed by the iterator. |
---|
212 | /// |
---|
213 | /// A typical usage: |
---|
214 | /// \code |
---|
215 | /// std::vector<Graph::Edge> v; |
---|
216 | /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v))); |
---|
217 | /// \endcode |
---|
218 | /// |
---|
219 | /// For the most common case, when the input is given by a simple edge |
---|
220 | /// map and the output is a sequence of the tree edges, a special |
---|
221 | /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut(). |
---|
222 | /// |
---|
223 | /// \warning Not a regular property map, as it doesn't know its KeyType |
---|
224 | |
---|
225 | template<class Iterator> |
---|
226 | class KruskalSequenceOutput { |
---|
227 | mutable Iterator it; |
---|
228 | |
---|
229 | public: |
---|
230 | typedef bool ValueType; |
---|
231 | |
---|
232 | KruskalSequenceOutput(Iterator const &_it) : it(_it) {} |
---|
233 | |
---|
234 | template<typename KeyType> |
---|
235 | void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} } |
---|
236 | }; |
---|
237 | |
---|
238 | template<class Iterator> |
---|
239 | inline |
---|
240 | KruskalSequenceOutput<Iterator> |
---|
241 | makeKruskalSequenceOutput(Iterator it) { |
---|
242 | return KruskalSequenceOutput<Iterator>(it); |
---|
243 | } |
---|
244 | |
---|
245 | |
---|
246 | |
---|
247 | /* ** ** Wrapper funtions ** ** */ |
---|
248 | |
---|
249 | |
---|
250 | |
---|
251 | /// \brief Wrapper function to kruskal(). |
---|
252 | /// Input is from an edge map, output is a plain bool map. |
---|
253 | /// |
---|
254 | /// Wrapper function to kruskal(). |
---|
255 | /// Input is from an edge map, output is a plain bool map. |
---|
256 | /// |
---|
257 | ///\param G The type of the graph the algorithm runs on. |
---|
258 | ///\param in An edge map containing the cost of the edges. |
---|
259 | ///\par |
---|
260 | ///The cost type can be any type satisfying the |
---|
261 | ///STL 'LessThan Comparable' |
---|
262 | ///concept if it also has an operator+() implemented. (It is necessary for |
---|
263 | ///computing the total cost of the tree). |
---|
264 | /// |
---|
265 | /// \retval out This must be a writable \c bool edge map. |
---|
266 | /// After running the algorithm |
---|
267 | /// this will contain the found minimum cost spanning tree: the value of an |
---|
268 | /// edge will be set to \c true if it belongs to the tree, otherwise it will |
---|
269 | /// be set to \c false. The value of each edge will be set exactly once. |
---|
270 | /// |
---|
271 | /// \return The cost of the found tree. |
---|
272 | |
---|
273 | template <class GR, class IN, class RET> |
---|
274 | inline |
---|
275 | typename IN::ValueType |
---|
276 | kruskalEdgeMap(GR const& G, |
---|
277 | IN const& in, |
---|
278 | RET &out) { |
---|
279 | return kruskal(G, |
---|
280 | KruskalMapInput<GR,IN>(G,in), |
---|
281 | out); |
---|
282 | } |
---|
283 | |
---|
284 | /// \brief Wrapper function to kruskal(). |
---|
285 | /// Input is from an edge map, output is an STL Sequence. |
---|
286 | /// |
---|
287 | /// Wrapper function to kruskal(). |
---|
288 | /// Input is from an edge map, output is an STL Sequence. |
---|
289 | /// |
---|
290 | ///\param G The type of the graph the algorithm runs on. |
---|
291 | ///\param in An edge map containing the cost of the edges. |
---|
292 | ///\par |
---|
293 | ///The cost type can be any type satisfying the |
---|
294 | ///STL 'LessThan Comparable' |
---|
295 | ///concept if it also has an operator+() implemented. (It is necessary for |
---|
296 | ///computing the total cost of the tree). |
---|
297 | /// |
---|
298 | /// \retval out This must be an iteraror of an STL Container with |
---|
299 | /// <tt>GR::Edge</tt> as its <tt>value_type</tt>. |
---|
300 | /// The algorithm copies the elements of the found tree into this sequence. |
---|
301 | /// For example, if we know that the spanning tree of the graph \c G has |
---|
302 | /// say 53 edges then |
---|
303 | /// we can put its edges into a STL vector \c tree with a code like this. |
---|
304 | /// \code |
---|
305 | /// std::vector<Edge> tree(53); |
---|
306 | /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin()); |
---|
307 | /// \endcode |
---|
308 | /// Or if we don't know in advance the size of the tree, we can write this. |
---|
309 | /// \code |
---|
310 | /// std::vector<Edge> tree; |
---|
311 | /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree)); |
---|
312 | /// \endcode |
---|
313 | /// |
---|
314 | /// \return The cost of the found tree. |
---|
315 | /// |
---|
316 | /// \bug its name does not follow the coding style. |
---|
317 | |
---|
318 | template <class GR, class IN, class RET> |
---|
319 | inline |
---|
320 | typename IN::ValueType |
---|
321 | kruskalEdgeMap_IteratorOut(const GR& G, |
---|
322 | const IN& in, |
---|
323 | RET out) |
---|
324 | { |
---|
325 | KruskalSequenceOutput<RET> _out(out); |
---|
326 | return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out); |
---|
327 | } |
---|
328 | |
---|
329 | /// @} |
---|
330 | |
---|
331 | } //namespace hugo |
---|
332 | |
---|
333 | #endif //HUGO_KRUSKAL_H |
---|