[726] | 1 | // -*- C++ -*- |
---|
[749] | 2 | #ifndef HUGO_MAX_FLOW_H |
---|
| 3 | #define HUGO_MAX_FLOW_H |
---|
[726] | 4 | |
---|
| 5 | #include <vector> |
---|
| 6 | #include <queue> |
---|
| 7 | |
---|
| 8 | #include <hugo/graph_wrapper.h> |
---|
| 9 | #include <hugo/invalid.h> |
---|
| 10 | #include <hugo/maps.h> |
---|
| 11 | |
---|
| 12 | /// \file |
---|
[758] | 13 | /// \ingroup flowalgs |
---|
[726] | 14 | |
---|
| 15 | namespace hugo { |
---|
| 16 | |
---|
[758] | 17 | /// \addtogroup flowalgs |
---|
| 18 | /// @{ |
---|
| 19 | |
---|
[726] | 20 | ///Maximum flow algorithms class. |
---|
| 21 | |
---|
| 22 | ///This class provides various algorithms for finding a flow of |
---|
| 23 | ///maximum value in a directed graph. The \e source node, the \e |
---|
| 24 | ///target node, the \e capacity of the edges and the \e starting \e |
---|
| 25 | ///flow value of the edges should be passed to the algorithm through the |
---|
| 26 | ///constructor. It is possible to change these quantities using the |
---|
[757] | 27 | ///functions \ref setSource, \ref setTarget, \ref setCap and |
---|
| 28 | ///\ref setFlow. Before any subsequent runs of any algorithm of |
---|
| 29 | ///the class \ref setFlow should be called. |
---|
[758] | 30 | /// |
---|
[726] | 31 | ///After running an algorithm of the class, the actual flow value |
---|
| 32 | ///can be obtained by calling \ref flowValue(). The minimum |
---|
| 33 | ///value cut can be written into a \c node map of \c bools by |
---|
| 34 | ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes |
---|
| 35 | ///the inclusionwise minimum and maximum of the minimum value |
---|
[758] | 36 | ///cuts, resp.) |
---|
| 37 | /// |
---|
[726] | 38 | ///\param Graph The directed graph type the algorithm runs on. |
---|
| 39 | ///\param Num The number type of the capacities and the flow values. |
---|
| 40 | ///\param CapMap The capacity map type. |
---|
[758] | 41 | ///\param FlowMap The flow map type. |
---|
| 42 | /// |
---|
[726] | 43 | ///\author Marton Makai, Jacint Szabo |
---|
| 44 | template <typename Graph, typename Num, |
---|
| 45 | typename CapMap=typename Graph::template EdgeMap<Num>, |
---|
| 46 | typename FlowMap=typename Graph::template EdgeMap<Num> > |
---|
| 47 | class MaxFlow { |
---|
| 48 | protected: |
---|
| 49 | typedef typename Graph::Node Node; |
---|
| 50 | typedef typename Graph::NodeIt NodeIt; |
---|
| 51 | typedef typename Graph::EdgeIt EdgeIt; |
---|
| 52 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 53 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
| 54 | |
---|
| 55 | typedef typename std::vector<Node> VecFirst; |
---|
| 56 | typedef typename Graph::template NodeMap<Node> NNMap; |
---|
| 57 | typedef typename std::vector<Node> VecNode; |
---|
| 58 | |
---|
| 59 | const Graph* g; |
---|
| 60 | Node s; |
---|
| 61 | Node t; |
---|
| 62 | const CapMap* capacity; |
---|
| 63 | FlowMap* flow; |
---|
| 64 | int n; //the number of nodes of G |
---|
| 65 | typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
| 66 | //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
---|
| 67 | typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
---|
| 68 | typedef typename ResGW::Edge ResGWEdge; |
---|
| 69 | typedef typename Graph::template NodeMap<int> ReachedMap; |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | //level works as a bool map in augmenting path algorithms and is |
---|
| 73 | //used by bfs for storing reached information. In preflow, it |
---|
| 74 | //shows the levels of nodes. |
---|
| 75 | ReachedMap level; |
---|
| 76 | |
---|
| 77 | //excess is needed only in preflow |
---|
| 78 | typename Graph::template NodeMap<Num> excess; |
---|
| 79 | |
---|
| 80 | // constants used for heuristics |
---|
| 81 | static const int H0=20; |
---|
| 82 | static const int H1=1; |
---|
| 83 | |
---|
| 84 | public: |
---|
| 85 | |
---|
| 86 | ///Indicates the property of the starting flow. |
---|
| 87 | |
---|
| 88 | ///Indicates the property of the starting flow. The meanings are as follows: |
---|
| 89 | ///- \c ZERO_FLOW: constant zero flow |
---|
| 90 | ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to |
---|
| 91 | ///the sum of the out-flows in every node except the \e source and |
---|
| 92 | ///the \e target. |
---|
| 93 | ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at |
---|
| 94 | ///least the sum of the out-flows in every node except the \e source. |
---|
| 95 | ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be |
---|
| 96 | ///set to the constant zero flow in the beginning of the algorithm in this case. |
---|
| 97 | enum FlowEnum{ |
---|
| 98 | ZERO_FLOW, |
---|
| 99 | GEN_FLOW, |
---|
| 100 | PRE_FLOW, |
---|
| 101 | NO_FLOW |
---|
| 102 | }; |
---|
| 103 | |
---|
| 104 | enum StatusEnum { |
---|
| 105 | AFTER_NOTHING, |
---|
| 106 | AFTER_AUGMENTING, |
---|
| 107 | AFTER_FAST_AUGMENTING, |
---|
| 108 | AFTER_PRE_FLOW_PHASE_1, |
---|
| 109 | AFTER_PRE_FLOW_PHASE_2 |
---|
| 110 | }; |
---|
| 111 | |
---|
[749] | 112 | /// Do not needle this flag only if necessary. |
---|
[726] | 113 | StatusEnum status; |
---|
| 114 | |
---|
| 115 | // int number_of_augmentations; |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | // template<typename IntMap> |
---|
| 119 | // class TrickyReachedMap { |
---|
| 120 | // protected: |
---|
| 121 | // IntMap* map; |
---|
| 122 | // int* number_of_augmentations; |
---|
| 123 | // public: |
---|
| 124 | // TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : |
---|
| 125 | // map(&_map), number_of_augmentations(&_number_of_augmentations) { } |
---|
| 126 | // void set(const Node& n, bool b) { |
---|
| 127 | // if (b) |
---|
| 128 | // map->set(n, *number_of_augmentations); |
---|
| 129 | // else |
---|
| 130 | // map->set(n, *number_of_augmentations-1); |
---|
| 131 | // } |
---|
| 132 | // bool operator[](const Node& n) const { |
---|
| 133 | // return (*map)[n]==*number_of_augmentations; |
---|
| 134 | // } |
---|
| 135 | // }; |
---|
| 136 | |
---|
| 137 | ///Constructor |
---|
| 138 | |
---|
| 139 | ///\todo Document, please. |
---|
| 140 | /// |
---|
| 141 | MaxFlow(const Graph& _G, Node _s, Node _t, |
---|
[745] | 142 | const CapMap& _capacity, FlowMap& _flow) : |
---|
[726] | 143 | g(&_G), s(_s), t(_t), capacity(&_capacity), |
---|
| 144 | flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), |
---|
| 145 | status(AFTER_NOTHING) { } |
---|
| 146 | |
---|
| 147 | ///Runs a maximum flow algorithm. |
---|
| 148 | |
---|
| 149 | ///Runs a preflow algorithm, which is the fastest maximum flow |
---|
| 150 | ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. |
---|
| 151 | ///\pre The starting flow must be |
---|
| 152 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
---|
| 153 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
---|
| 154 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
---|
| 155 | /// - any map if \c fe is NO_FLOW. |
---|
| 156 | void run(FlowEnum fe=ZERO_FLOW) { |
---|
| 157 | preflow(fe); |
---|
| 158 | } |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | ///Runs a preflow algorithm. |
---|
| 162 | |
---|
| 163 | ///Runs a preflow algorithm. The preflow algorithms provide the |
---|
| 164 | ///fastest way to compute a maximum flow in a directed graph. |
---|
| 165 | ///\pre The starting flow must be |
---|
| 166 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
---|
| 167 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
---|
| 168 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
---|
| 169 | /// - any map if \c fe is NO_FLOW. |
---|
| 170 | /// |
---|
| 171 | ///\todo NO_FLOW should be the default flow. |
---|
| 172 | void preflow(FlowEnum fe) { |
---|
| 173 | preflowPhase1(fe); |
---|
| 174 | preflowPhase2(); |
---|
| 175 | } |
---|
| 176 | // Heuristics: |
---|
| 177 | // 2 phase |
---|
| 178 | // gap |
---|
| 179 | // list 'level_list' on the nodes on level i implemented by hand |
---|
| 180 | // stack 'active' on the active nodes on level i |
---|
| 181 | // runs heuristic 'highest label' for H1*n relabels |
---|
| 182 | // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' |
---|
| 183 | // Parameters H0 and H1 are initialized to 20 and 1. |
---|
| 184 | |
---|
| 185 | ///Runs the first phase of the preflow algorithm. |
---|
| 186 | |
---|
| 187 | ///The preflow algorithm consists of two phases, this method runs the |
---|
| 188 | ///first phase. After the first phase the maximum flow value and a |
---|
| 189 | ///minimum value cut can already be computed, though a maximum flow |
---|
[749] | 190 | ///is not yet obtained. So after calling this method \ref flowValue |
---|
[726] | 191 | ///and \ref actMinCut gives proper results. |
---|
| 192 | ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not |
---|
| 193 | ///give minimum value cuts unless calling \ref preflowPhase2. |
---|
| 194 | ///\pre The starting flow must be |
---|
| 195 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, |
---|
| 196 | /// - an arbitary flow if \c fe is \c GEN_FLOW, |
---|
| 197 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, |
---|
| 198 | /// - any map if \c fe is NO_FLOW. |
---|
| 199 | void preflowPhase1(FlowEnum fe) |
---|
| 200 | { |
---|
| 201 | |
---|
| 202 | int heur0=(int)(H0*n); //time while running 'bound decrease' |
---|
| 203 | int heur1=(int)(H1*n); //time while running 'highest label' |
---|
| 204 | int heur=heur1; //starting time interval (#of relabels) |
---|
| 205 | int numrelabel=0; |
---|
| 206 | |
---|
| 207 | bool what_heur=1; |
---|
| 208 | //It is 0 in case 'bound decrease' and 1 in case 'highest label' |
---|
| 209 | |
---|
| 210 | bool end=false; |
---|
| 211 | //Needed for 'bound decrease', true means no active nodes are above bound |
---|
| 212 | //b. |
---|
| 213 | |
---|
| 214 | int k=n-2; //bound on the highest level under n containing a node |
---|
| 215 | int b=k; //bound on the highest level under n of an active node |
---|
| 216 | |
---|
| 217 | VecFirst first(n, INVALID); |
---|
| 218 | NNMap next(*g, INVALID); //maybe INVALID is not needed |
---|
| 219 | |
---|
| 220 | NNMap left(*g, INVALID); |
---|
| 221 | NNMap right(*g, INVALID); |
---|
| 222 | VecNode level_list(n,INVALID); |
---|
| 223 | //List of the nodes in level i<n, set to n. |
---|
| 224 | |
---|
[745] | 225 | preflowPreproc(fe, next, first, level_list, left, right); |
---|
[726] | 226 | //End of preprocessing |
---|
| 227 | |
---|
| 228 | //Push/relabel on the highest level active nodes. |
---|
| 229 | while ( true ) { |
---|
| 230 | if ( b == 0 ) { |
---|
| 231 | if ( !what_heur && !end && k > 0 ) { |
---|
| 232 | b=k; |
---|
| 233 | end=true; |
---|
| 234 | } else break; |
---|
| 235 | } |
---|
| 236 | |
---|
[745] | 237 | if ( !g->valid(first[b]) ) --b; |
---|
[726] | 238 | else { |
---|
| 239 | end=false; |
---|
| 240 | Node w=first[b]; |
---|
| 241 | first[b]=next[w]; |
---|
[745] | 242 | int newlevel=push(w, next, first); |
---|
| 243 | if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list, |
---|
[726] | 244 | left, right, b, k, what_heur); |
---|
| 245 | |
---|
| 246 | ++numrelabel; |
---|
| 247 | if ( numrelabel >= heur ) { |
---|
| 248 | numrelabel=0; |
---|
| 249 | if ( what_heur ) { |
---|
| 250 | what_heur=0; |
---|
| 251 | heur=heur0; |
---|
| 252 | end=false; |
---|
| 253 | } else { |
---|
| 254 | what_heur=1; |
---|
| 255 | heur=heur1; |
---|
| 256 | b=k; |
---|
| 257 | } |
---|
| 258 | } |
---|
| 259 | } |
---|
| 260 | } |
---|
| 261 | |
---|
| 262 | status=AFTER_PRE_FLOW_PHASE_1; |
---|
| 263 | } |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | ///Runs the second phase of the preflow algorithm. |
---|
| 267 | |
---|
| 268 | ///The preflow algorithm consists of two phases, this method runs |
---|
| 269 | ///the second phase. After calling \ref preflowPhase1 and then |
---|
| 270 | ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, |
---|
| 271 | ///\ref minMinCut and \ref maxMinCut give proper results. |
---|
| 272 | ///\pre \ref preflowPhase1 must be called before. |
---|
| 273 | void preflowPhase2() |
---|
| 274 | { |
---|
| 275 | |
---|
| 276 | int k=n-2; //bound on the highest level under n containing a node |
---|
| 277 | int b=k; //bound on the highest level under n of an active node |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | VecFirst first(n, INVALID); |
---|
| 281 | NNMap next(*g, INVALID); //maybe INVALID is not needed |
---|
| 282 | level.set(s,0); |
---|
| 283 | std::queue<Node> bfs_queue; |
---|
| 284 | bfs_queue.push(s); |
---|
| 285 | |
---|
| 286 | while (!bfs_queue.empty()) { |
---|
| 287 | |
---|
| 288 | Node v=bfs_queue.front(); |
---|
| 289 | bfs_queue.pop(); |
---|
| 290 | int l=level[v]+1; |
---|
| 291 | |
---|
| 292 | InEdgeIt e; |
---|
| 293 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
| 294 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
| 295 | Node u=g->tail(e); |
---|
| 296 | if ( level[u] >= n ) { |
---|
| 297 | bfs_queue.push(u); |
---|
| 298 | level.set(u, l); |
---|
| 299 | if ( excess[u] > 0 ) { |
---|
| 300 | next.set(u,first[l]); |
---|
| 301 | first[l]=u; |
---|
| 302 | } |
---|
| 303 | } |
---|
| 304 | } |
---|
| 305 | |
---|
| 306 | OutEdgeIt f; |
---|
| 307 | for(g->first(f,v); g->valid(f); g->next(f)) { |
---|
| 308 | if ( 0 >= (*flow)[f] ) continue; |
---|
| 309 | Node u=g->head(f); |
---|
| 310 | if ( level[u] >= n ) { |
---|
| 311 | bfs_queue.push(u); |
---|
| 312 | level.set(u, l); |
---|
| 313 | if ( excess[u] > 0 ) { |
---|
| 314 | next.set(u,first[l]); |
---|
| 315 | first[l]=u; |
---|
| 316 | } |
---|
| 317 | } |
---|
| 318 | } |
---|
| 319 | } |
---|
| 320 | b=n-2; |
---|
| 321 | |
---|
| 322 | while ( true ) { |
---|
| 323 | |
---|
| 324 | if ( b == 0 ) break; |
---|
| 325 | |
---|
[745] | 326 | if ( !g->valid(first[b]) ) --b; |
---|
[726] | 327 | else { |
---|
| 328 | |
---|
| 329 | Node w=first[b]; |
---|
| 330 | first[b]=next[w]; |
---|
| 331 | int newlevel=push(w,next, first/*active*/); |
---|
| 332 | |
---|
| 333 | //relabel |
---|
| 334 | if ( excess[w] > 0 ) { |
---|
| 335 | level.set(w,++newlevel); |
---|
| 336 | next.set(w,first[newlevel]); |
---|
| 337 | first[newlevel]=w; |
---|
| 338 | b=newlevel; |
---|
| 339 | } |
---|
[749] | 340 | } |
---|
[726] | 341 | } // while(true) |
---|
| 342 | |
---|
| 343 | status=AFTER_PRE_FLOW_PHASE_2; |
---|
| 344 | } |
---|
| 345 | |
---|
| 346 | |
---|
[761] | 347 | /// Returns the value of the maximum flow. |
---|
[726] | 348 | |
---|
[761] | 349 | /// Returns the excess of the target node \ref t. |
---|
| 350 | /// After running \ref preflowPhase1, this is the value of |
---|
| 351 | /// the maximum flow. |
---|
[726] | 352 | /// It can be called already after running \ref preflowPhase1. |
---|
| 353 | Num flowValue() const { |
---|
[761] | 354 | // Num a=0; |
---|
| 355 | // for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e]; |
---|
| 356 | // for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e]; |
---|
| 357 | // return a; |
---|
| 358 | return excess[t]; |
---|
[726] | 359 | //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan |
---|
| 360 | } |
---|
[749] | 361 | |
---|
[726] | 362 | |
---|
| 363 | ///Returns a minimum value cut after calling \ref preflowPhase1. |
---|
| 364 | |
---|
| 365 | ///After the first phase of the preflow algorithm the maximum flow |
---|
| 366 | ///value and a minimum value cut can already be computed. This |
---|
| 367 | ///method can be called after running \ref preflowPhase1 for |
---|
| 368 | ///obtaining a minimum value cut. |
---|
| 369 | /// \warning Gives proper result only right after calling \ref |
---|
| 370 | /// preflowPhase1. |
---|
| 371 | /// \todo We have to make some status variable which shows the |
---|
| 372 | /// actual state |
---|
| 373 | /// of the class. This enables us to determine which methods are valid |
---|
| 374 | /// for MinCut computation |
---|
| 375 | template<typename _CutMap> |
---|
| 376 | void actMinCut(_CutMap& M) const { |
---|
| 377 | NodeIt v; |
---|
| 378 | switch (status) { |
---|
| 379 | case AFTER_PRE_FLOW_PHASE_1: |
---|
| 380 | for(g->first(v); g->valid(v); g->next(v)) { |
---|
| 381 | if (level[v] < n) { |
---|
| 382 | M.set(v, false); |
---|
| 383 | } else { |
---|
| 384 | M.set(v, true); |
---|
| 385 | } |
---|
| 386 | } |
---|
| 387 | break; |
---|
| 388 | case AFTER_PRE_FLOW_PHASE_2: |
---|
| 389 | case AFTER_NOTHING: |
---|
[745] | 390 | case AFTER_AUGMENTING: |
---|
| 391 | case AFTER_FAST_AUGMENTING: |
---|
[726] | 392 | minMinCut(M); |
---|
| 393 | break; |
---|
| 394 | } |
---|
| 395 | } |
---|
| 396 | |
---|
| 397 | ///Returns the inclusionwise minimum of the minimum value cuts. |
---|
| 398 | |
---|
| 399 | ///Sets \c M to the characteristic vector of the minimum value cut |
---|
| 400 | ///which is inclusionwise minimum. It is computed by processing |
---|
| 401 | ///a bfs from the source node \c s in the residual graph. |
---|
| 402 | ///\pre M should be a node map of bools initialized to false. |
---|
| 403 | ///\pre \c flow must be a maximum flow. |
---|
| 404 | template<typename _CutMap> |
---|
| 405 | void minMinCut(_CutMap& M) const { |
---|
| 406 | std::queue<Node> queue; |
---|
| 407 | |
---|
| 408 | M.set(s,true); |
---|
| 409 | queue.push(s); |
---|
| 410 | |
---|
| 411 | while (!queue.empty()) { |
---|
| 412 | Node w=queue.front(); |
---|
| 413 | queue.pop(); |
---|
| 414 | |
---|
| 415 | OutEdgeIt e; |
---|
| 416 | for(g->first(e,w) ; g->valid(e); g->next(e)) { |
---|
| 417 | Node v=g->head(e); |
---|
| 418 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
| 419 | queue.push(v); |
---|
| 420 | M.set(v, true); |
---|
| 421 | } |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | InEdgeIt f; |
---|
| 425 | for(g->first(f,w) ; g->valid(f); g->next(f)) { |
---|
| 426 | Node v=g->tail(f); |
---|
| 427 | if (!M[v] && (*flow)[f] > 0 ) { |
---|
| 428 | queue.push(v); |
---|
| 429 | M.set(v, true); |
---|
| 430 | } |
---|
| 431 | } |
---|
| 432 | } |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | ///Returns the inclusionwise maximum of the minimum value cuts. |
---|
| 436 | |
---|
| 437 | ///Sets \c M to the characteristic vector of the minimum value cut |
---|
| 438 | ///which is inclusionwise maximum. It is computed by processing a |
---|
| 439 | ///backward bfs from the target node \c t in the residual graph. |
---|
| 440 | ///\pre M should be a node map of bools initialized to false. |
---|
| 441 | ///\pre \c flow must be a maximum flow. |
---|
| 442 | template<typename _CutMap> |
---|
| 443 | void maxMinCut(_CutMap& M) const { |
---|
| 444 | |
---|
| 445 | NodeIt v; |
---|
| 446 | for(g->first(v) ; g->valid(v); g->next(v)) { |
---|
| 447 | M.set(v, true); |
---|
| 448 | } |
---|
| 449 | |
---|
| 450 | std::queue<Node> queue; |
---|
| 451 | |
---|
| 452 | M.set(t,false); |
---|
| 453 | queue.push(t); |
---|
| 454 | |
---|
| 455 | while (!queue.empty()) { |
---|
| 456 | Node w=queue.front(); |
---|
| 457 | queue.pop(); |
---|
| 458 | |
---|
| 459 | InEdgeIt e; |
---|
| 460 | for(g->first(e,w) ; g->valid(e); g->next(e)) { |
---|
| 461 | Node v=g->tail(e); |
---|
| 462 | if (M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
| 463 | queue.push(v); |
---|
| 464 | M.set(v, false); |
---|
| 465 | } |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | OutEdgeIt f; |
---|
| 469 | for(g->first(f,w) ; g->valid(f); g->next(f)) { |
---|
| 470 | Node v=g->head(f); |
---|
| 471 | if (M[v] && (*flow)[f] > 0 ) { |
---|
| 472 | queue.push(v); |
---|
| 473 | M.set(v, false); |
---|
| 474 | } |
---|
| 475 | } |
---|
| 476 | } |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | ///Returns a minimum value cut. |
---|
| 480 | |
---|
| 481 | ///Sets \c M to the characteristic vector of a minimum value cut. |
---|
| 482 | ///\pre M should be a node map of bools initialized to false. |
---|
| 483 | ///\pre \c flow must be a maximum flow. |
---|
| 484 | template<typename CutMap> |
---|
| 485 | void minCut(CutMap& M) const { minMinCut(M); } |
---|
| 486 | |
---|
[757] | 487 | ///Sets the source node to \c _s. |
---|
[726] | 488 | |
---|
[757] | 489 | ///Sets the source node to \c _s. |
---|
[726] | 490 | /// |
---|
[757] | 491 | void setSource(Node _s) { s=_s; status=AFTER_NOTHING; } |
---|
[726] | 492 | |
---|
[757] | 493 | ///Sets the target node to \c _t. |
---|
[726] | 494 | |
---|
[757] | 495 | ///Sets the target node to \c _t. |
---|
[726] | 496 | /// |
---|
[757] | 497 | void setTarget(Node _t) { t=_t; status=AFTER_NOTHING; } |
---|
[726] | 498 | |
---|
[757] | 499 | /// Sets the edge map of the capacities to _cap. |
---|
[726] | 500 | |
---|
[757] | 501 | /// Sets the edge map of the capacities to _cap. |
---|
[726] | 502 | /// |
---|
[757] | 503 | void setCap(const CapMap& _cap) |
---|
[726] | 504 | { capacity=&_cap; status=AFTER_NOTHING; } |
---|
| 505 | |
---|
[757] | 506 | /// Sets the edge map of the flows to _flow. |
---|
[726] | 507 | |
---|
[757] | 508 | /// Sets the edge map of the flows to _flow. |
---|
[726] | 509 | /// |
---|
[757] | 510 | void setFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; } |
---|
[726] | 511 | |
---|
| 512 | |
---|
| 513 | private: |
---|
| 514 | |
---|
| 515 | int push(Node w, NNMap& next, VecFirst& first) { |
---|
| 516 | |
---|
| 517 | int lev=level[w]; |
---|
| 518 | Num exc=excess[w]; |
---|
| 519 | int newlevel=n; //bound on the next level of w |
---|
| 520 | |
---|
| 521 | OutEdgeIt e; |
---|
| 522 | for(g->first(e,w); g->valid(e); g->next(e)) { |
---|
| 523 | |
---|
| 524 | if ( (*flow)[e] >= (*capacity)[e] ) continue; |
---|
| 525 | Node v=g->head(e); |
---|
| 526 | |
---|
| 527 | if( lev > level[v] ) { //Push is allowed now |
---|
| 528 | |
---|
| 529 | if ( excess[v]<=0 && v!=t && v!=s ) { |
---|
| 530 | next.set(v,first[level[v]]); |
---|
| 531 | first[level[v]]=v; |
---|
| 532 | } |
---|
| 533 | |
---|
| 534 | Num cap=(*capacity)[e]; |
---|
| 535 | Num flo=(*flow)[e]; |
---|
| 536 | Num remcap=cap-flo; |
---|
| 537 | |
---|
| 538 | if ( remcap >= exc ) { //A nonsaturating push. |
---|
| 539 | |
---|
| 540 | flow->set(e, flo+exc); |
---|
| 541 | excess.set(v, excess[v]+exc); |
---|
| 542 | exc=0; |
---|
| 543 | break; |
---|
| 544 | |
---|
| 545 | } else { //A saturating push. |
---|
| 546 | flow->set(e, cap); |
---|
| 547 | excess.set(v, excess[v]+remcap); |
---|
| 548 | exc-=remcap; |
---|
| 549 | } |
---|
| 550 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
---|
| 551 | } //for out edges wv |
---|
| 552 | |
---|
| 553 | if ( exc > 0 ) { |
---|
| 554 | InEdgeIt e; |
---|
| 555 | for(g->first(e,w); g->valid(e); g->next(e)) { |
---|
| 556 | |
---|
| 557 | if( (*flow)[e] <= 0 ) continue; |
---|
| 558 | Node v=g->tail(e); |
---|
| 559 | |
---|
| 560 | if( lev > level[v] ) { //Push is allowed now |
---|
| 561 | |
---|
| 562 | if ( excess[v]<=0 && v!=t && v!=s ) { |
---|
| 563 | next.set(v,first[level[v]]); |
---|
| 564 | first[level[v]]=v; |
---|
| 565 | } |
---|
| 566 | |
---|
| 567 | Num flo=(*flow)[e]; |
---|
| 568 | |
---|
| 569 | if ( flo >= exc ) { //A nonsaturating push. |
---|
| 570 | |
---|
| 571 | flow->set(e, flo-exc); |
---|
| 572 | excess.set(v, excess[v]+exc); |
---|
| 573 | exc=0; |
---|
| 574 | break; |
---|
| 575 | } else { //A saturating push. |
---|
| 576 | |
---|
| 577 | excess.set(v, excess[v]+flo); |
---|
| 578 | exc-=flo; |
---|
| 579 | flow->set(e,0); |
---|
| 580 | } |
---|
| 581 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
---|
| 582 | } //for in edges vw |
---|
| 583 | |
---|
| 584 | } // if w still has excess after the out edge for cycle |
---|
| 585 | |
---|
| 586 | excess.set(w, exc); |
---|
| 587 | |
---|
| 588 | return newlevel; |
---|
| 589 | } |
---|
| 590 | |
---|
| 591 | |
---|
[749] | 592 | |
---|
[726] | 593 | void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first, |
---|
| 594 | VecNode& level_list, NNMap& left, NNMap& right) |
---|
| 595 | { |
---|
[749] | 596 | switch (fe) { //setting excess |
---|
| 597 | case NO_FLOW: |
---|
| 598 | { |
---|
| 599 | EdgeIt e; |
---|
| 600 | for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0); |
---|
| 601 | |
---|
| 602 | NodeIt v; |
---|
| 603 | for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
---|
| 604 | break; |
---|
| 605 | } |
---|
| 606 | case ZERO_FLOW: |
---|
| 607 | { |
---|
| 608 | NodeIt v; |
---|
| 609 | for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
---|
| 610 | break; |
---|
| 611 | } |
---|
| 612 | case GEN_FLOW: |
---|
| 613 | { |
---|
| 614 | NodeIt v; |
---|
| 615 | for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); |
---|
| 616 | |
---|
| 617 | Num exc=0; |
---|
| 618 | InEdgeIt e; |
---|
| 619 | for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
---|
| 620 | OutEdgeIt f; |
---|
| 621 | for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
---|
| 622 | excess.set(t,exc); |
---|
| 623 | break; |
---|
| 624 | } |
---|
| 625 | default: break; |
---|
| 626 | } |
---|
| 627 | |
---|
| 628 | NodeIt v; |
---|
| 629 | for(g->first(v); g->valid(v); g->next(v)) level.set(v,n); |
---|
| 630 | //setting each node to level n |
---|
| 631 | |
---|
[726] | 632 | std::queue<Node> bfs_queue; |
---|
| 633 | |
---|
[749] | 634 | |
---|
[726] | 635 | switch (fe) { |
---|
[749] | 636 | case NO_FLOW: //flow is already set to const zero |
---|
[726] | 637 | case ZERO_FLOW: |
---|
| 638 | { |
---|
| 639 | //Reverse_bfs from t, to find the starting level. |
---|
| 640 | level.set(t,0); |
---|
| 641 | bfs_queue.push(t); |
---|
| 642 | |
---|
| 643 | while (!bfs_queue.empty()) { |
---|
| 644 | |
---|
| 645 | Node v=bfs_queue.front(); |
---|
| 646 | bfs_queue.pop(); |
---|
| 647 | int l=level[v]+1; |
---|
| 648 | |
---|
| 649 | InEdgeIt e; |
---|
| 650 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
| 651 | Node w=g->tail(e); |
---|
| 652 | if ( level[w] == n && w != s ) { |
---|
| 653 | bfs_queue.push(w); |
---|
| 654 | Node z=level_list[l]; |
---|
| 655 | if ( g->valid(z) ) left.set(z,w); |
---|
| 656 | right.set(w,z); |
---|
| 657 | level_list[l]=w; |
---|
| 658 | level.set(w, l); |
---|
| 659 | } |
---|
| 660 | } |
---|
| 661 | } |
---|
| 662 | |
---|
| 663 | //the starting flow |
---|
| 664 | OutEdgeIt e; |
---|
| 665 | for(g->first(e,s); g->valid(e); g->next(e)) |
---|
| 666 | { |
---|
| 667 | Num c=(*capacity)[e]; |
---|
| 668 | if ( c <= 0 ) continue; |
---|
| 669 | Node w=g->head(e); |
---|
| 670 | if ( level[w] < n ) { |
---|
[749] | 671 | if ( excess[w] <= 0 && w!=t ) //putting into the stack |
---|
| 672 | { |
---|
[726] | 673 | next.set(w,first[level[w]]); |
---|
| 674 | first[level[w]]=w; |
---|
| 675 | } |
---|
| 676 | flow->set(e, c); |
---|
| 677 | excess.set(w, excess[w]+c); |
---|
| 678 | } |
---|
| 679 | } |
---|
| 680 | break; |
---|
| 681 | } |
---|
| 682 | |
---|
| 683 | case GEN_FLOW: |
---|
[749] | 684 | { |
---|
| 685 | //Reverse_bfs from t in the residual graph, |
---|
| 686 | //to find the starting level. |
---|
| 687 | level.set(t,0); |
---|
| 688 | bfs_queue.push(t); |
---|
| 689 | |
---|
| 690 | while (!bfs_queue.empty()) { |
---|
| 691 | |
---|
| 692 | Node v=bfs_queue.front(); |
---|
| 693 | bfs_queue.pop(); |
---|
| 694 | int l=level[v]+1; |
---|
| 695 | |
---|
| 696 | InEdgeIt e; |
---|
| 697 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
| 698 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
| 699 | Node w=g->tail(e); |
---|
| 700 | if ( level[w] == n && w != s ) { |
---|
| 701 | bfs_queue.push(w); |
---|
| 702 | Node z=level_list[l]; |
---|
| 703 | if ( g->valid(z) ) left.set(z,w); |
---|
| 704 | right.set(w,z); |
---|
| 705 | level_list[l]=w; |
---|
| 706 | level.set(w, l); |
---|
| 707 | } |
---|
| 708 | } |
---|
| 709 | |
---|
| 710 | OutEdgeIt f; |
---|
| 711 | for(g->first(f,v); g->valid(f); g->next(f)) { |
---|
| 712 | if ( 0 >= (*flow)[f] ) continue; |
---|
| 713 | Node w=g->head(f); |
---|
| 714 | if ( level[w] == n && w != s ) { |
---|
| 715 | bfs_queue.push(w); |
---|
| 716 | Node z=level_list[l]; |
---|
| 717 | if ( g->valid(z) ) left.set(z,w); |
---|
| 718 | right.set(w,z); |
---|
| 719 | level_list[l]=w; |
---|
| 720 | level.set(w, l); |
---|
| 721 | } |
---|
| 722 | } |
---|
| 723 | } |
---|
| 724 | |
---|
| 725 | //the starting flow |
---|
| 726 | OutEdgeIt e; |
---|
| 727 | for(g->first(e,s); g->valid(e); g->next(e)) |
---|
| 728 | { |
---|
| 729 | Num rem=(*capacity)[e]-(*flow)[e]; |
---|
| 730 | if ( rem <= 0 ) continue; |
---|
| 731 | Node w=g->head(e); |
---|
| 732 | if ( level[w] < n ) { |
---|
| 733 | if ( excess[w] <= 0 && w!=t ) //putting into the stack |
---|
| 734 | { |
---|
| 735 | next.set(w,first[level[w]]); |
---|
| 736 | first[level[w]]=w; |
---|
| 737 | } |
---|
| 738 | flow->set(e, (*capacity)[e]); |
---|
| 739 | excess.set(w, excess[w]+rem); |
---|
| 740 | } |
---|
| 741 | } |
---|
| 742 | |
---|
| 743 | InEdgeIt f; |
---|
| 744 | for(g->first(f,s); g->valid(f); g->next(f)) |
---|
| 745 | { |
---|
| 746 | if ( (*flow)[f] <= 0 ) continue; |
---|
| 747 | Node w=g->tail(f); |
---|
| 748 | if ( level[w] < n ) { |
---|
| 749 | if ( excess[w] <= 0 && w!=t ) |
---|
| 750 | { |
---|
| 751 | next.set(w,first[level[w]]); |
---|
| 752 | first[level[w]]=w; |
---|
| 753 | } |
---|
| 754 | excess.set(w, excess[w]+(*flow)[f]); |
---|
| 755 | flow->set(f, 0); |
---|
| 756 | } |
---|
| 757 | } |
---|
| 758 | break; |
---|
| 759 | } //case GEN_FLOW |
---|
| 760 | |
---|
[726] | 761 | case PRE_FLOW: |
---|
| 762 | { |
---|
| 763 | //Reverse_bfs from t in the residual graph, |
---|
| 764 | //to find the starting level. |
---|
| 765 | level.set(t,0); |
---|
| 766 | bfs_queue.push(t); |
---|
| 767 | |
---|
| 768 | while (!bfs_queue.empty()) { |
---|
| 769 | |
---|
| 770 | Node v=bfs_queue.front(); |
---|
| 771 | bfs_queue.pop(); |
---|
| 772 | int l=level[v]+1; |
---|
| 773 | |
---|
| 774 | InEdgeIt e; |
---|
| 775 | for(g->first(e,v); g->valid(e); g->next(e)) { |
---|
| 776 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
| 777 | Node w=g->tail(e); |
---|
| 778 | if ( level[w] == n && w != s ) { |
---|
| 779 | bfs_queue.push(w); |
---|
| 780 | Node z=level_list[l]; |
---|
| 781 | if ( g->valid(z) ) left.set(z,w); |
---|
| 782 | right.set(w,z); |
---|
| 783 | level_list[l]=w; |
---|
| 784 | level.set(w, l); |
---|
| 785 | } |
---|
| 786 | } |
---|
| 787 | |
---|
| 788 | OutEdgeIt f; |
---|
| 789 | for(g->first(f,v); g->valid(f); g->next(f)) { |
---|
| 790 | if ( 0 >= (*flow)[f] ) continue; |
---|
| 791 | Node w=g->head(f); |
---|
| 792 | if ( level[w] == n && w != s ) { |
---|
| 793 | bfs_queue.push(w); |
---|
| 794 | Node z=level_list[l]; |
---|
| 795 | if ( g->valid(z) ) left.set(z,w); |
---|
| 796 | right.set(w,z); |
---|
| 797 | level_list[l]=w; |
---|
| 798 | level.set(w, l); |
---|
| 799 | } |
---|
| 800 | } |
---|
| 801 | } |
---|
| 802 | |
---|
| 803 | |
---|
| 804 | //the starting flow |
---|
| 805 | OutEdgeIt e; |
---|
| 806 | for(g->first(e,s); g->valid(e); g->next(e)) |
---|
| 807 | { |
---|
| 808 | Num rem=(*capacity)[e]-(*flow)[e]; |
---|
| 809 | if ( rem <= 0 ) continue; |
---|
| 810 | Node w=g->head(e); |
---|
| 811 | if ( level[w] < n ) { |
---|
| 812 | flow->set(e, (*capacity)[e]); |
---|
| 813 | excess.set(w, excess[w]+rem); |
---|
| 814 | } |
---|
| 815 | } |
---|
| 816 | |
---|
| 817 | InEdgeIt f; |
---|
| 818 | for(g->first(f,s); g->valid(f); g->next(f)) |
---|
| 819 | { |
---|
| 820 | if ( (*flow)[f] <= 0 ) continue; |
---|
| 821 | Node w=g->tail(f); |
---|
| 822 | if ( level[w] < n ) { |
---|
| 823 | excess.set(w, excess[w]+(*flow)[f]); |
---|
| 824 | flow->set(f, 0); |
---|
| 825 | } |
---|
| 826 | } |
---|
[749] | 827 | |
---|
| 828 | NodeIt w; //computing the excess |
---|
| 829 | for(g->first(w); g->valid(w); g->next(w)) { |
---|
| 830 | Num exc=0; |
---|
| 831 | |
---|
| 832 | InEdgeIt e; |
---|
| 833 | for(g->first(e,w); g->valid(e); g->next(e)) exc+=(*flow)[e]; |
---|
| 834 | OutEdgeIt f; |
---|
| 835 | for(g->first(f,w); g->valid(f); g->next(f)) exc-=(*flow)[f]; |
---|
| 836 | |
---|
| 837 | excess.set(w,exc); |
---|
| 838 | |
---|
| 839 | //putting the active nodes into the stack |
---|
| 840 | int lev=level[w]; |
---|
| 841 | if ( exc > 0 && lev < n && w != t ) |
---|
| 842 | { |
---|
| 843 | next.set(w,first[lev]); |
---|
| 844 | first[lev]=w; |
---|
| 845 | } |
---|
| 846 | } |
---|
[726] | 847 | break; |
---|
| 848 | } //case PRE_FLOW |
---|
| 849 | } |
---|
| 850 | } //preflowPreproc |
---|
| 851 | |
---|
| 852 | |
---|
| 853 | void relabel(Node w, int newlevel, NNMap& next, VecFirst& first, |
---|
| 854 | VecNode& level_list, NNMap& left, |
---|
| 855 | NNMap& right, int& b, int& k, bool what_heur ) |
---|
| 856 | { |
---|
| 857 | |
---|
| 858 | Num lev=level[w]; |
---|
| 859 | |
---|
| 860 | Node right_n=right[w]; |
---|
| 861 | Node left_n=left[w]; |
---|
| 862 | |
---|
| 863 | //unlacing starts |
---|
| 864 | if ( g->valid(right_n) ) { |
---|
| 865 | if ( g->valid(left_n) ) { |
---|
| 866 | right.set(left_n, right_n); |
---|
| 867 | left.set(right_n, left_n); |
---|
| 868 | } else { |
---|
| 869 | level_list[lev]=right_n; |
---|
| 870 | left.set(right_n, INVALID); |
---|
| 871 | } |
---|
| 872 | } else { |
---|
| 873 | if ( g->valid(left_n) ) { |
---|
| 874 | right.set(left_n, INVALID); |
---|
| 875 | } else { |
---|
| 876 | level_list[lev]=INVALID; |
---|
| 877 | } |
---|
| 878 | } |
---|
| 879 | //unlacing ends |
---|
| 880 | |
---|
| 881 | if ( !g->valid(level_list[lev]) ) { |
---|
| 882 | |
---|
| 883 | //gapping starts |
---|
| 884 | for (int i=lev; i!=k ; ) { |
---|
| 885 | Node v=level_list[++i]; |
---|
| 886 | while ( g->valid(v) ) { |
---|
| 887 | level.set(v,n); |
---|
| 888 | v=right[v]; |
---|
| 889 | } |
---|
| 890 | level_list[i]=INVALID; |
---|
| 891 | if ( !what_heur ) first[i]=INVALID; |
---|
| 892 | } |
---|
| 893 | |
---|
| 894 | level.set(w,n); |
---|
| 895 | b=lev-1; |
---|
| 896 | k=b; |
---|
| 897 | //gapping ends |
---|
| 898 | |
---|
| 899 | } else { |
---|
| 900 | |
---|
| 901 | if ( newlevel == n ) level.set(w,n); |
---|
| 902 | else { |
---|
| 903 | level.set(w,++newlevel); |
---|
| 904 | next.set(w,first[newlevel]); |
---|
| 905 | first[newlevel]=w; |
---|
| 906 | if ( what_heur ) b=newlevel; |
---|
| 907 | if ( k < newlevel ) ++k; //now k=newlevel |
---|
| 908 | Node z=level_list[newlevel]; |
---|
| 909 | if ( g->valid(z) ) left.set(z,w); |
---|
| 910 | right.set(w,z); |
---|
| 911 | left.set(w,INVALID); |
---|
| 912 | level_list[newlevel]=w; |
---|
| 913 | } |
---|
| 914 | } |
---|
| 915 | } //relabel |
---|
[749] | 916 | |
---|
| 917 | void printexcess() {//// |
---|
| 918 | std::cout << "Excesses:" <<std::endl; |
---|
| 919 | |
---|
| 920 | NodeIt v; |
---|
| 921 | for(g->first(v); g->valid(v); g->next(v)) { |
---|
| 922 | std::cout << 1+(g->id(v)) << ":" << excess[v]<<std::endl; |
---|
| 923 | } |
---|
| 924 | } |
---|
| 925 | |
---|
| 926 | void printlevel() {//// |
---|
| 927 | std::cout << "Levels:" <<std::endl; |
---|
| 928 | |
---|
| 929 | NodeIt v; |
---|
| 930 | for(g->first(v); g->valid(v); g->next(v)) { |
---|
| 931 | std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; |
---|
| 932 | } |
---|
| 933 | } |
---|
| 934 | |
---|
| 935 | void printactive() {//// |
---|
| 936 | std::cout << "Levels:" <<std::endl; |
---|
| 937 | |
---|
| 938 | NodeIt v; |
---|
| 939 | for(g->first(v); g->valid(v); g->next(v)) { |
---|
| 940 | std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; |
---|
| 941 | } |
---|
| 942 | } |
---|
| 943 | |
---|
| 944 | |
---|
[726] | 945 | }; //class MaxFlow |
---|
| 946 | } //namespace hugo |
---|
| 947 | |
---|
| 948 | #endif //HUGO_MAX_FLOW_H |
---|
| 949 | |
---|
| 950 | |
---|
| 951 | |
---|
| 952 | |
---|