// -*- C++ -*- #ifndef HUGO_MAX_FLOW_NO_STACK_H #define HUGO_MAX_FLOW_NO_STACK_H #include #include //#include #include #include #include /// \file /// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test. /// \ingroup galgs namespace hugo { /// \addtogroup galgs /// @{ ///Maximum flow algorithms class. ///This class provides various algorithms for finding a flow of ///maximum value in a directed graph. The \e source node, the \e ///target node, the \e capacity of the edges and the \e starting \e ///flow value of the edges should be passed to the algorithm through the ///constructor. It is possible to change these quantities using the ///functions \ref resetSource, \ref resetTarget, \ref resetCap and ///\ref resetFlow. Before any subsequent runs of any algorithm of ///the class \ref resetFlow should be called. ///After running an algorithm of the class, the actual flow value ///can be obtained by calling \ref flowValue(). The minimum ///value cut can be written into a \c node map of \c bools by ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes ///the inclusionwise minimum and maximum of the minimum value ///cuts, resp.) ///\param Graph The directed graph type the algorithm runs on. ///\param Num The number type of the capacities and the flow values. ///\param CapMap The capacity map type. ///\param FlowMap The flow map type. ///\author Marton Makai, Jacint Szabo template , typename FlowMap=typename Graph::template EdgeMap > class MaxFlow { protected: typedef typename Graph::Node Node; typedef typename Graph::NodeIt NodeIt; typedef typename Graph::EdgeIt EdgeIt; typedef typename Graph::OutEdgeIt OutEdgeIt; typedef typename Graph::InEdgeIt InEdgeIt; // typedef typename std::vector > VecStack; typedef typename std::vector VecFirst; typedef typename Graph::template NodeMap NNMap; typedef typename std::vector VecNode; const Graph* g; Node s; Node t; const CapMap* capacity; FlowMap* flow; int n; //the number of nodes of G typedef ResGraphWrapper ResGW; //typedef ExpResGraphWrapper ResGW; typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; typedef typename ResGW::Edge ResGWEdge; //typedef typename ResGW::template NodeMap ReachedMap; typedef typename Graph::template NodeMap ReachedMap; //level works as a bool map in augmenting path algorithms and is //used by bfs for storing reached information. In preflow, it //shows the levels of nodes. ReachedMap level; //excess is needed only in preflow typename Graph::template NodeMap excess; // constants used for heuristics static const int H0=20; static const int H1=1; public: ///Indicates the property of the starting flow. ///Indicates the property of the starting flow. The meanings are as follows: ///- \c ZERO_FLOW: constant zero flow ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to ///the sum of the out-flows in every node except the \e source and ///the \e target. ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at ///least the sum of the out-flows in every node except the \e source. ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be ///set to the constant zero flow in the beginning of the algorithm in this case. enum FlowEnum{ ZERO_FLOW, GEN_FLOW, PRE_FLOW, NO_FLOW }; enum StatusEnum { AFTER_NOTHING, AFTER_AUGMENTING, AFTER_FAST_AUGMENTING, AFTER_PRE_FLOW_PHASE_1, AFTER_PRE_FLOW_PHASE_2 }; /// Don not needle this flag only if necessary. StatusEnum status; // int number_of_augmentations; // template // class TrickyReachedMap { // protected: // IntMap* map; // int* number_of_augmentations; // public: // TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : // map(&_map), number_of_augmentations(&_number_of_augmentations) { } // void set(const Node& n, bool b) { // if (b) // map->set(n, *number_of_augmentations); // else // map->set(n, *number_of_augmentations-1); // } // bool operator[](const Node& n) const { // return (*map)[n]==*number_of_augmentations; // } // }; ///Constructor ///\todo Document, please. /// MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, FlowMap& _flow) : g(&_G), s(_s), t(_t), capacity(&_capacity), flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), status(AFTER_NOTHING) { } ///Runs a maximum flow algorithm. ///Runs a preflow algorithm, which is the fastest maximum flow ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. ///\pre The starting flow must be /// - a constant zero flow if \c fe is \c ZERO_FLOW, /// - an arbitary flow if \c fe is \c GEN_FLOW, /// - an arbitary preflow if \c fe is \c PRE_FLOW, /// - any map if \c fe is NO_FLOW. void run(FlowEnum fe=ZERO_FLOW) { preflow(fe); } ///Runs a preflow algorithm. ///Runs a preflow algorithm. The preflow algorithms provide the ///fastest way to compute a maximum flow in a directed graph. ///\pre The starting flow must be /// - a constant zero flow if \c fe is \c ZERO_FLOW, /// - an arbitary flow if \c fe is \c GEN_FLOW, /// - an arbitary preflow if \c fe is \c PRE_FLOW, /// - any map if \c fe is NO_FLOW. /// ///\todo NO_FLOW should be the default flow. void preflow(FlowEnum fe) { preflowPhase1(fe); preflowPhase2(); } // Heuristics: // 2 phase // gap // list 'level_list' on the nodes on level i implemented by hand // stack 'active' on the active nodes on level i // runs heuristic 'highest label' for H1*n relabels // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' // Parameters H0 and H1 are initialized to 20 and 1. ///Runs the first phase of the preflow algorithm. ///The preflow algorithm consists of two phases, this method runs the ///first phase. After the first phase the maximum flow value and a ///minimum value cut can already be computed, though a maximum flow ///is net yet obtained. So after calling this method \ref flowValue ///and \ref actMinCut gives proper results. ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not ///give minimum value cuts unless calling \ref preflowPhase2. ///\pre The starting flow must be /// - a constant zero flow if \c fe is \c ZERO_FLOW, /// - an arbitary flow if \c fe is \c GEN_FLOW, /// - an arbitary preflow if \c fe is \c PRE_FLOW, /// - any map if \c fe is NO_FLOW. void preflowPhase1(FlowEnum fe) { int heur0=(int)(H0*n); //time while running 'bound decrease' int heur1=(int)(H1*n); //time while running 'highest label' int heur=heur1; //starting time interval (#of relabels) int numrelabel=0; bool what_heur=1; //It is 0 in case 'bound decrease' and 1 in case 'highest label' bool end=false; //Needed for 'bound decrease', true means no active nodes are above bound //b. int k=n-2; //bound on the highest level under n containing a node int b=k; //bound on the highest level under n of an active node VecFirst first(n, INVALID); NNMap next(*g, INVALID); //maybe INVALID is not needed NNMap left(*g, INVALID); NNMap right(*g, INVALID); VecNode level_list(n,INVALID); //List of the nodes in level ifirst(v); g->valid(v); g->next(v)) level.set(v,n); //setting each node to level n if ( fe == NO_FLOW ) { EdgeIt e; for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0); } switch (fe) { //computing the excess case PRE_FLOW: { NodeIt v; for(g->first(v); g->valid(v); g->next(v)) { Num exc=0; InEdgeIt e; for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; OutEdgeIt f; for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; excess.set(v,exc); //putting the active nodes into the stack int lev=level[v]; if ( exc > 0 && lev < n && v != t ) { next.set(v,first[lev]); first[lev]=v; } } break; } case GEN_FLOW: { NodeIt v; for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); Num exc=0; InEdgeIt e; for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; OutEdgeIt f; for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; excess.set(t,exc); break; } case ZERO_FLOW: case NO_FLOW: { NodeIt v; for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0); break; } } preflowPreproc(fe, next, first, level_list, left, right); //End of preprocessing //Push/relabel on the highest level active nodes. while ( true ) { if ( b == 0 ) { if ( !what_heur && !end && k > 0 ) { b=k; end=true; } else break; } if ( !g->valid(first[b]) ) --b; else { end=false; Node w=first[b]; first[b]=next[w]; int newlevel=push(w, next, first); if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list, left, right, b, k, what_heur); ++numrelabel; if ( numrelabel >= heur ) { numrelabel=0; if ( what_heur ) { what_heur=0; heur=heur0; end=false; } else { what_heur=1; heur=heur1; b=k; } } } } status=AFTER_PRE_FLOW_PHASE_1; } ///Runs the second phase of the preflow algorithm. ///The preflow algorithm consists of two phases, this method runs ///the second phase. After calling \ref preflowPhase1 and then ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, ///\ref minMinCut and \ref maxMinCut give proper results. ///\pre \ref preflowPhase1 must be called before. void preflowPhase2() { int k=n-2; //bound on the highest level under n containing a node int b=k; //bound on the highest level under n of an active node VecFirst first(n, INVALID); NNMap next(*g, INVALID); //maybe INVALID is not needed level.set(s,0); std::queue bfs_queue; bfs_queue.push(s); while (!bfs_queue.empty()) { Node v=bfs_queue.front(); bfs_queue.pop(); int l=level[v]+1; InEdgeIt e; for(g->first(e,v); g->valid(e); g->next(e)) { if ( (*capacity)[e] <= (*flow)[e] ) continue; Node u=g->tail(e); if ( level[u] >= n ) { bfs_queue.push(u); level.set(u, l); if ( excess[u] > 0 ) { next.set(u,first[l]); first[l]=u; } } } OutEdgeIt f; for(g->first(f,v); g->valid(f); g->next(f)) { if ( 0 >= (*flow)[f] ) continue; Node u=g->head(f); if ( level[u] >= n ) { bfs_queue.push(u); level.set(u, l); if ( excess[u] > 0 ) { next.set(u,first[l]); first[l]=u; } } } } b=n-2; while ( true ) { if ( b == 0 ) break; if ( !g->valid(first[b]) ) --b; else { Node w=first[b]; first[b]=next[w]; int newlevel=push(w,next, first/*active*/); //relabel if ( excess[w] > 0 ) { level.set(w,++newlevel); next.set(w,first[newlevel]); first[newlevel]=w; b=newlevel; } } // if stack[b] is nonempty } // while(true) status=AFTER_PRE_FLOW_PHASE_2; } /// Returns the maximum value of a flow. /// Returns the maximum value of a flow, by counting the /// over-flow of the target node \ref t. /// It can be called already after running \ref preflowPhase1. Num flowValue() const { Num a=0; for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e]; for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e]; return a; //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan } Num flowValue2() const { return excess[t]; // Num a=0; // for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e]; // for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e]; // return a; // //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan } ///Returns a minimum value cut after calling \ref preflowPhase1. ///After the first phase of the preflow algorithm the maximum flow ///value and a minimum value cut can already be computed. This ///method can be called after running \ref preflowPhase1 for ///obtaining a minimum value cut. /// \warning Gives proper result only right after calling \ref /// preflowPhase1. /// \todo We have to make some status variable which shows the /// actual state /// of the class. This enables us to determine which methods are valid /// for MinCut computation template void actMinCut(_CutMap& M) const { NodeIt v; switch (status) { case AFTER_PRE_FLOW_PHASE_1: for(g->first(v); g->valid(v); g->next(v)) { if (level[v] < n) { M.set(v, false); } else { M.set(v, true); } } break; case AFTER_PRE_FLOW_PHASE_2: case AFTER_NOTHING: case AFTER_AUGMENTING: case AFTER_FAST_AUGMENTING: minMinCut(M); break; } } ///Returns the inclusionwise minimum of the minimum value cuts. ///Sets \c M to the characteristic vector of the minimum value cut ///which is inclusionwise minimum. It is computed by processing ///a bfs from the source node \c s in the residual graph. ///\pre M should be a node map of bools initialized to false. ///\pre \c flow must be a maximum flow. template void minMinCut(_CutMap& M) const { std::queue queue; M.set(s,true); queue.push(s); while (!queue.empty()) { Node w=queue.front(); queue.pop(); OutEdgeIt e; for(g->first(e,w) ; g->valid(e); g->next(e)) { Node v=g->head(e); if (!M[v] && (*flow)[e] < (*capacity)[e] ) { queue.push(v); M.set(v, true); } } InEdgeIt f; for(g->first(f,w) ; g->valid(f); g->next(f)) { Node v=g->tail(f); if (!M[v] && (*flow)[f] > 0 ) { queue.push(v); M.set(v, true); } } } } ///Returns the inclusionwise maximum of the minimum value cuts. ///Sets \c M to the characteristic vector of the minimum value cut ///which is inclusionwise maximum. It is computed by processing a ///backward bfs from the target node \c t in the residual graph. ///\pre M should be a node map of bools initialized to false. ///\pre \c flow must be a maximum flow. template void maxMinCut(_CutMap& M) const { NodeIt v; for(g->first(v) ; g->valid(v); g->next(v)) { M.set(v, true); } std::queue queue; M.set(t,false); queue.push(t); while (!queue.empty()) { Node w=queue.front(); queue.pop(); InEdgeIt e; for(g->first(e,w) ; g->valid(e); g->next(e)) { Node v=g->tail(e); if (M[v] && (*flow)[e] < (*capacity)[e] ) { queue.push(v); M.set(v, false); } } OutEdgeIt f; for(g->first(f,w) ; g->valid(f); g->next(f)) { Node v=g->head(f); if (M[v] && (*flow)[f] > 0 ) { queue.push(v); M.set(v, false); } } } } ///Returns a minimum value cut. ///Sets \c M to the characteristic vector of a minimum value cut. ///\pre M should be a node map of bools initialized to false. ///\pre \c flow must be a maximum flow. template void minCut(CutMap& M) const { minMinCut(M); } ///Resets the source node to \c _s. ///Resets the source node to \c _s. /// void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; } ///Resets the target node to \c _t. ///Resets the target node to \c _t. /// void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; } /// Resets the edge map of the capacities to _cap. /// Resets the edge map of the capacities to _cap. /// void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; } /// Resets the edge map of the flows to _flow. /// Resets the edge map of the flows to _flow. /// void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; } private: int push(Node w, NNMap& next, VecFirst& first) { int lev=level[w]; Num exc=excess[w]; int newlevel=n; //bound on the next level of w OutEdgeIt e; for(g->first(e,w); g->valid(e); g->next(e)) { if ( (*flow)[e] >= (*capacity)[e] ) continue; Node v=g->head(e); if( lev > level[v] ) { //Push is allowed now if ( excess[v]<=0 && v!=t && v!=s ) { next.set(v,first[level[v]]); first[level[v]]=v; } Num cap=(*capacity)[e]; Num flo=(*flow)[e]; Num remcap=cap-flo; if ( remcap >= exc ) { //A nonsaturating push. flow->set(e, flo+exc); excess.set(v, excess[v]+exc); exc=0; break; } else { //A saturating push. flow->set(e, cap); excess.set(v, excess[v]+remcap); exc-=remcap; } } else if ( newlevel > level[v] ) newlevel = level[v]; } //for out edges wv if ( exc > 0 ) { InEdgeIt e; for(g->first(e,w); g->valid(e); g->next(e)) { if( (*flow)[e] <= 0 ) continue; Node v=g->tail(e); if( lev > level[v] ) { //Push is allowed now if ( excess[v]<=0 && v!=t && v!=s ) { next.set(v,first[level[v]]); first[level[v]]=v; } Num flo=(*flow)[e]; if ( flo >= exc ) { //A nonsaturating push. flow->set(e, flo-exc); excess.set(v, excess[v]+exc); exc=0; break; } else { //A saturating push. excess.set(v, excess[v]+flo); exc-=flo; flow->set(e,0); } } else if ( newlevel > level[v] ) newlevel = level[v]; } //for in edges vw } // if w still has excess after the out edge for cycle excess.set(w, exc); return newlevel; } void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first, VecNode& level_list, NNMap& left, NNMap& right) { std::queue bfs_queue; switch (fe) { case NO_FLOW: //flow is already set to const zero in this case case ZERO_FLOW: { //Reverse_bfs from t, to find the starting level. level.set(t,0); bfs_queue.push(t); while (!bfs_queue.empty()) { Node v=bfs_queue.front(); bfs_queue.pop(); int l=level[v]+1; InEdgeIt e; for(g->first(e,v); g->valid(e); g->next(e)) { Node w=g->tail(e); if ( level[w] == n && w != s ) { bfs_queue.push(w); Node z=level_list[l]; if ( g->valid(z) ) left.set(z,w); right.set(w,z); level_list[l]=w; level.set(w, l); } } } //the starting flow OutEdgeIt e; for(g->first(e,s); g->valid(e); g->next(e)) { Num c=(*capacity)[e]; if ( c <= 0 ) continue; Node w=g->head(e); if ( level[w] < n ) { if ( excess[w] <= 0 && w!=t ) { next.set(w,first[level[w]]); first[level[w]]=w; } flow->set(e, c); excess.set(w, excess[w]+c); } } break; } case GEN_FLOW: case PRE_FLOW: { //Reverse_bfs from t in the residual graph, //to find the starting level. level.set(t,0); bfs_queue.push(t); while (!bfs_queue.empty()) { Node v=bfs_queue.front(); bfs_queue.pop(); int l=level[v]+1; InEdgeIt e; for(g->first(e,v); g->valid(e); g->next(e)) { if ( (*capacity)[e] <= (*flow)[e] ) continue; Node w=g->tail(e); if ( level[w] == n && w != s ) { bfs_queue.push(w); Node z=level_list[l]; if ( g->valid(z) ) left.set(z,w); right.set(w,z); level_list[l]=w; level.set(w, l); } } OutEdgeIt f; for(g->first(f,v); g->valid(f); g->next(f)) { if ( 0 >= (*flow)[f] ) continue; Node w=g->head(f); if ( level[w] == n && w != s ) { bfs_queue.push(w); Node z=level_list[l]; if ( g->valid(z) ) left.set(z,w); right.set(w,z); level_list[l]=w; level.set(w, l); } } } //the starting flow OutEdgeIt e; for(g->first(e,s); g->valid(e); g->next(e)) { Num rem=(*capacity)[e]-(*flow)[e]; if ( rem <= 0 ) continue; Node w=g->head(e); if ( level[w] < n ) { if ( excess[w] <= 0 && w!=t ) { next.set(w,first[level[w]]); first[level[w]]=w; } flow->set(e, (*capacity)[e]); excess.set(w, excess[w]+rem); } } InEdgeIt f; for(g->first(f,s); g->valid(f); g->next(f)) { if ( (*flow)[f] <= 0 ) continue; Node w=g->tail(f); if ( level[w] < n ) { if ( excess[w] <= 0 && w!=t ) { next.set(w,first[level[w]]); first[level[w]]=w; } excess.set(w, excess[w]+(*flow)[f]); flow->set(f, 0); } } break; } //case PRE_FLOW } } //preflowPreproc void relabel(Node w, int newlevel, NNMap& next, VecFirst& first, VecNode& level_list, NNMap& left, NNMap& right, int& b, int& k, bool what_heur ) { Num lev=level[w]; Node right_n=right[w]; Node left_n=left[w]; //unlacing starts if ( g->valid(right_n) ) { if ( g->valid(left_n) ) { right.set(left_n, right_n); left.set(right_n, left_n); } else { level_list[lev]=right_n; left.set(right_n, INVALID); } } else { if ( g->valid(left_n) ) { right.set(left_n, INVALID); } else { level_list[lev]=INVALID; } } //unlacing ends if ( !g->valid(level_list[lev]) ) { //gapping starts for (int i=lev; i!=k ; ) { Node v=level_list[++i]; while ( g->valid(v) ) { level.set(v,n); v=right[v]; } level_list[i]=INVALID; if ( !what_heur ) first[i]=INVALID; } level.set(w,n); b=lev-1; k=b; //gapping ends } else { if ( newlevel == n ) level.set(w,n); else { level.set(w,++newlevel); next.set(w,first[newlevel]); first[newlevel]=w; if ( what_heur ) b=newlevel; if ( k < newlevel ) ++k; //now k=newlevel Node z=level_list[newlevel]; if ( g->valid(z) ) left.set(z,w); right.set(w,z); left.set(w,INVALID); level_list[newlevel]=w; } } } //relabel }; //class MaxFlow } //namespace hugo #endif //HUGO_MAX_FLOW_H