1 | /* -*- C++ -*- |
---|
2 | * src/hugo/min_cost_flow.h - Part of HUGOlib, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Combinatorial Optimization Research Group, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef HUGO_MIN_COST_FLOW_H |
---|
18 | #define HUGO_MIN_COST_FLOW_H |
---|
19 | |
---|
20 | ///\ingroup flowalgs |
---|
21 | ///\file |
---|
22 | ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost |
---|
23 | |
---|
24 | |
---|
25 | #include <hugo/dijkstra.h> |
---|
26 | #include <hugo/graph_wrapper.h> |
---|
27 | #include <hugo/maps.h> |
---|
28 | #include <vector> |
---|
29 | |
---|
30 | namespace hugo { |
---|
31 | |
---|
32 | /// \addtogroup flowalgs |
---|
33 | /// @{ |
---|
34 | |
---|
35 | ///\brief Implementation of an algorithm for finding a flow of value \c k |
---|
36 | ///(for small values of \c k) having minimal total cost between 2 nodes |
---|
37 | /// |
---|
38 | /// |
---|
39 | /// The class \ref hugo::MinCostFlow "MinCostFlow" implements |
---|
40 | /// an algorithm for finding a flow of value \c k |
---|
41 | /// having minimal total cost |
---|
42 | /// from a given source node to a given target node in an |
---|
43 | /// edge-weighted directed graph. To this end, |
---|
44 | /// the edge-capacities and edge-weitghs have to be nonnegative. |
---|
45 | /// The edge-capacities should be integers, but the edge-weights can be |
---|
46 | /// integers, reals or of other comparable numeric type. |
---|
47 | /// This algorithm is intended to use only for small values of \c k, |
---|
48 | /// since it is only polynomial in k, |
---|
49 | /// not in the length of k (which is log k). |
---|
50 | /// In order to find the minimum cost flow of value \c k it |
---|
51 | /// finds the minimum cost flow of value \c i for every |
---|
52 | /// \c i between 0 and \c k. |
---|
53 | /// |
---|
54 | ///\param Graph The directed graph type the algorithm runs on. |
---|
55 | ///\param LengthMap The type of the length map. |
---|
56 | ///\param CapacityMap The capacity map type. |
---|
57 | /// |
---|
58 | ///\author Attila Bernath |
---|
59 | template <typename Graph, typename LengthMap, typename CapacityMap> |
---|
60 | class MinCostFlow { |
---|
61 | |
---|
62 | typedef typename LengthMap::ValueType Length; |
---|
63 | |
---|
64 | //Warning: this should be integer type |
---|
65 | typedef typename CapacityMap::ValueType Capacity; |
---|
66 | |
---|
67 | typedef typename Graph::Node Node; |
---|
68 | typedef typename Graph::NodeIt NodeIt; |
---|
69 | typedef typename Graph::Edge Edge; |
---|
70 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
71 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
72 | |
---|
73 | |
---|
74 | typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType; |
---|
75 | typedef typename ResGraphType::Edge ResGraphEdge; |
---|
76 | |
---|
77 | class ModLengthMap { |
---|
78 | typedef typename Graph::template NodeMap<Length> NodeMap; |
---|
79 | const ResGraphType& G; |
---|
80 | const LengthMap &ol; |
---|
81 | const NodeMap &pot; |
---|
82 | public : |
---|
83 | typedef typename LengthMap::KeyType KeyType; |
---|
84 | typedef typename LengthMap::ValueType ValueType; |
---|
85 | |
---|
86 | ValueType operator[](typename ResGraphType::Edge e) const { |
---|
87 | if (G.forward(e)) |
---|
88 | return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
---|
89 | else |
---|
90 | return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
---|
91 | } |
---|
92 | |
---|
93 | ModLengthMap(const ResGraphType& _G, |
---|
94 | const LengthMap &o, const NodeMap &p) : |
---|
95 | G(_G), /*rev(_rev),*/ ol(o), pot(p){}; |
---|
96 | };//ModLengthMap |
---|
97 | |
---|
98 | |
---|
99 | protected: |
---|
100 | |
---|
101 | //Input |
---|
102 | const Graph& G; |
---|
103 | const LengthMap& length; |
---|
104 | const CapacityMap& capacity; |
---|
105 | |
---|
106 | |
---|
107 | //auxiliary variables |
---|
108 | |
---|
109 | //To store the flow |
---|
110 | EdgeIntMap flow; |
---|
111 | //To store the potential (dual variables) |
---|
112 | typedef typename Graph::template NodeMap<Length> PotentialMap; |
---|
113 | PotentialMap potential; |
---|
114 | |
---|
115 | |
---|
116 | Length total_length; |
---|
117 | |
---|
118 | |
---|
119 | public : |
---|
120 | |
---|
121 | /// The constructor of the class. |
---|
122 | |
---|
123 | ///\param _G The directed graph the algorithm runs on. |
---|
124 | ///\param _length The length (weight or cost) of the edges. |
---|
125 | ///\param _cap The capacity of the edges. |
---|
126 | MinCostFlow(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), |
---|
127 | length(_length), capacity(_cap), flow(_G), potential(_G){ } |
---|
128 | |
---|
129 | |
---|
130 | ///Runs the algorithm. |
---|
131 | |
---|
132 | ///Runs the algorithm. |
---|
133 | ///Returns k if there is a flow of value at least k edge-disjoint |
---|
134 | ///from s to t. |
---|
135 | ///Otherwise it returns the maximum value of a flow from s to t. |
---|
136 | /// |
---|
137 | ///\param s The source node. |
---|
138 | ///\param t The target node. |
---|
139 | ///\param k The value of the flow we are looking for. |
---|
140 | /// |
---|
141 | ///\todo May be it does make sense to be able to start with a nonzero |
---|
142 | /// feasible primal-dual solution pair as well. |
---|
143 | int run(Node s, Node t, int k) { |
---|
144 | |
---|
145 | //Resetting variables from previous runs |
---|
146 | total_length = 0; |
---|
147 | |
---|
148 | for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0); |
---|
149 | |
---|
150 | //Initialize the potential to zero |
---|
151 | for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0); |
---|
152 | |
---|
153 | |
---|
154 | //We need a residual graph |
---|
155 | ResGraphType res_graph(G, capacity, flow); |
---|
156 | |
---|
157 | |
---|
158 | ModLengthMap mod_length(res_graph, length, potential); |
---|
159 | |
---|
160 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); |
---|
161 | |
---|
162 | int i; |
---|
163 | for (i=0; i<k; ++i){ |
---|
164 | dijkstra.run(s); |
---|
165 | if (!dijkstra.reached(t)){ |
---|
166 | //There are no flow of value k from s to t |
---|
167 | break; |
---|
168 | }; |
---|
169 | |
---|
170 | //We have to change the potential |
---|
171 | for(typename ResGraphType::NodeIt n(res_graph); n!=INVALID; ++n) |
---|
172 | potential[n] += dijkstra.distMap()[n]; |
---|
173 | |
---|
174 | |
---|
175 | //Augmenting on the sortest path |
---|
176 | Node n=t; |
---|
177 | ResGraphEdge e; |
---|
178 | while (n!=s){ |
---|
179 | e = dijkstra.pred(n); |
---|
180 | n = dijkstra.predNode(n); |
---|
181 | res_graph.augment(e,1); |
---|
182 | //Let's update the total length |
---|
183 | if (res_graph.forward(e)) |
---|
184 | total_length += length[e]; |
---|
185 | else |
---|
186 | total_length -= length[e]; |
---|
187 | } |
---|
188 | |
---|
189 | |
---|
190 | } |
---|
191 | |
---|
192 | |
---|
193 | return i; |
---|
194 | } |
---|
195 | |
---|
196 | |
---|
197 | |
---|
198 | /// Gives back the total weight of the found flow. |
---|
199 | |
---|
200 | ///This function gives back the total weight of the found flow. |
---|
201 | ///Assumes that \c run() has been run and nothing changed since then. |
---|
202 | Length totalLength(){ |
---|
203 | return total_length; |
---|
204 | } |
---|
205 | |
---|
206 | ///Returns a const reference to the EdgeMap \c flow. |
---|
207 | |
---|
208 | ///Returns a const reference to the EdgeMap \c flow. |
---|
209 | ///\pre \ref run() must |
---|
210 | ///be called before using this function. |
---|
211 | const EdgeIntMap &getFlow() const { return flow;} |
---|
212 | |
---|
213 | ///Returns a const reference to the NodeMap \c potential (the dual solution). |
---|
214 | |
---|
215 | ///Returns a const reference to the NodeMap \c potential (the dual solution). |
---|
216 | /// \pre \ref run() must be called before using this function. |
---|
217 | const PotentialMap &getPotential() const { return potential;} |
---|
218 | |
---|
219 | /// Checking the complementary slackness optimality criteria |
---|
220 | |
---|
221 | ///This function checks, whether the given solution is optimal |
---|
222 | ///If executed after the call of \c run() then it should return with true. |
---|
223 | ///This function only checks optimality, doesn't bother with feasibility. |
---|
224 | ///It is meant for testing purposes. |
---|
225 | /// |
---|
226 | bool checkComplementarySlackness(){ |
---|
227 | Length mod_pot; |
---|
228 | Length fl_e; |
---|
229 | for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) { |
---|
230 | //C^{\Pi}_{i,j} |
---|
231 | mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)]; |
---|
232 | fl_e = flow[e]; |
---|
233 | if (0<fl_e && fl_e<capacity[e]) { |
---|
234 | /// \todo better comparison is needed for real types, moreover, |
---|
235 | /// this comparison here is superfluous. |
---|
236 | if (mod_pot != 0) |
---|
237 | return false; |
---|
238 | } |
---|
239 | else { |
---|
240 | if (mod_pot > 0 && fl_e != 0) |
---|
241 | return false; |
---|
242 | if (mod_pot < 0 && fl_e != capacity[e]) |
---|
243 | return false; |
---|
244 | } |
---|
245 | } |
---|
246 | return true; |
---|
247 | } |
---|
248 | |
---|
249 | |
---|
250 | }; //class MinCostFlow |
---|
251 | |
---|
252 | ///@} |
---|
253 | |
---|
254 | } //namespace hugo |
---|
255 | |
---|
256 | #endif //HUGO_MIN_COST_FLOW_H |
---|