[610] | 1 | // -*- c++ -*- |
---|
| 2 | #ifndef HUGO_MINCOSTFLOWS_H |
---|
| 3 | #define HUGO_MINCOSTFLOWS_H |
---|
| 4 | |
---|
| 5 | ///\ingroup galgs |
---|
| 6 | ///\file |
---|
| 7 | ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost |
---|
| 8 | |
---|
[611] | 9 | |
---|
[610] | 10 | #include <hugo/dijkstra.h> |
---|
| 11 | #include <hugo/graph_wrapper.h> |
---|
| 12 | #include <hugo/maps.h> |
---|
| 13 | #include <vector> |
---|
| 14 | #include <for_each_macros.h> |
---|
| 15 | |
---|
| 16 | namespace hugo { |
---|
| 17 | |
---|
| 18 | /// \addtogroup galgs |
---|
| 19 | /// @{ |
---|
| 20 | |
---|
| 21 | ///\brief Implementation of an algorithm for finding a flow of value \c k |
---|
| 22 | ///(for small values of \c k) having minimal total cost between 2 nodes |
---|
| 23 | /// |
---|
| 24 | /// |
---|
| 25 | /// The class \ref hugo::MinCostFlows "MinCostFlows" implements |
---|
| 26 | /// an algorithm for finding a flow of value \c k |
---|
| 27 | ///(for small values of \c k) having minimal total cost |
---|
| 28 | /// from a given source node to a given target node in an |
---|
| 29 | /// edge-weighted directed graph having nonnegative integer capacities. |
---|
| 30 | /// The range of the length (weight) function is nonnegative reals but |
---|
| 31 | /// the range of capacity function is the set of nonnegative integers. |
---|
| 32 | /// It is not a polinomial time algorithm for counting the minimum cost |
---|
| 33 | /// maximal flow, since it counts the minimum cost flow for every value 0..M |
---|
| 34 | /// where \c M is the value of the maximal flow. |
---|
| 35 | /// |
---|
| 36 | ///\author Attila Bernath |
---|
| 37 | template <typename Graph, typename LengthMap, typename CapacityMap> |
---|
| 38 | class MinCostFlows { |
---|
| 39 | |
---|
| 40 | typedef typename LengthMap::ValueType Length; |
---|
| 41 | |
---|
| 42 | //Warning: this should be integer type |
---|
| 43 | typedef typename CapacityMap::ValueType Capacity; |
---|
| 44 | |
---|
| 45 | typedef typename Graph::Node Node; |
---|
| 46 | typedef typename Graph::NodeIt NodeIt; |
---|
| 47 | typedef typename Graph::Edge Edge; |
---|
| 48 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 49 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
| 50 | |
---|
| 51 | // typedef ConstMap<Edge,int> ConstMap; |
---|
| 52 | |
---|
| 53 | typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType; |
---|
| 54 | typedef typename ResGraphType::Edge ResGraphEdge; |
---|
| 55 | |
---|
| 56 | class ModLengthMap { |
---|
| 57 | //typedef typename ResGraphType::template NodeMap<Length> NodeMap; |
---|
| 58 | typedef typename Graph::template NodeMap<Length> NodeMap; |
---|
| 59 | const ResGraphType& G; |
---|
| 60 | // const EdgeIntMap& rev; |
---|
| 61 | const LengthMap &ol; |
---|
| 62 | const NodeMap &pot; |
---|
| 63 | public : |
---|
| 64 | typedef typename LengthMap::KeyType KeyType; |
---|
| 65 | typedef typename LengthMap::ValueType ValueType; |
---|
| 66 | |
---|
| 67 | ValueType operator[](typename ResGraphType::Edge e) const { |
---|
| 68 | if (G.forward(e)) |
---|
| 69 | return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
---|
| 70 | else |
---|
| 71 | return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
---|
| 72 | } |
---|
| 73 | |
---|
| 74 | ModLengthMap(const ResGraphType& _G, |
---|
| 75 | const LengthMap &o, const NodeMap &p) : |
---|
| 76 | G(_G), /*rev(_rev),*/ ol(o), pot(p){}; |
---|
| 77 | };//ModLengthMap |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | protected: |
---|
| 81 | |
---|
| 82 | //Input |
---|
| 83 | const Graph& G; |
---|
| 84 | const LengthMap& length; |
---|
| 85 | const CapacityMap& capacity; |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | //auxiliary variables |
---|
| 89 | |
---|
| 90 | //To store the flow |
---|
| 91 | EdgeIntMap flow; |
---|
| 92 | //To store the potentila (dual variables) |
---|
| 93 | typename Graph::template NodeMap<Length> potential; |
---|
| 94 | |
---|
| 95 | //Container to store found paths |
---|
| 96 | //std::vector< std::vector<Edge> > paths; |
---|
| 97 | //typedef DirPath<Graph> DPath; |
---|
| 98 | //DPath paths; |
---|
| 99 | |
---|
| 100 | |
---|
| 101 | Length total_length; |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | public : |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), |
---|
| 108 | length(_length), capacity(_cap), flow(_G), potential(_G){ } |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | ///Runs the algorithm. |
---|
| 112 | |
---|
| 113 | ///Runs the algorithm. |
---|
| 114 | ///Returns k if there are at least k edge-disjoint paths from s to t. |
---|
| 115 | ///Otherwise it returns the number of found edge-disjoint paths from s to t. |
---|
| 116 | ///\todo May be it does make sense to be able to start with a nonzero |
---|
| 117 | /// feasible primal-dual solution pair as well. |
---|
| 118 | int run(Node s, Node t, int k) { |
---|
| 119 | |
---|
| 120 | //Resetting variables from previous runs |
---|
| 121 | total_length = 0; |
---|
| 122 | |
---|
| 123 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ |
---|
| 124 | flow.set(e,0); |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | FOR_EACH_LOC(typename Graph::NodeIt, n, G){ |
---|
| 128 | //cout << potential[n]<<endl; |
---|
| 129 | potential.set(n,0); |
---|
| 130 | } |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | |
---|
| 134 | //We need a residual graph |
---|
| 135 | ResGraphType res_graph(G, capacity, flow); |
---|
| 136 | |
---|
| 137 | //Initialize the copy of the Dijkstra potential to zero |
---|
| 138 | |
---|
| 139 | //typename ResGraphType::template NodeMap<Length> potential(res_graph); |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | ModLengthMap mod_length(res_graph, length, potential); |
---|
| 143 | |
---|
| 144 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); |
---|
| 145 | |
---|
| 146 | int i; |
---|
| 147 | for (i=0; i<k; ++i){ |
---|
| 148 | dijkstra.run(s); |
---|
| 149 | if (!dijkstra.reached(t)){ |
---|
| 150 | //There are no k paths from s to t |
---|
| 151 | break; |
---|
| 152 | }; |
---|
| 153 | |
---|
| 154 | { |
---|
| 155 | //We have to copy the potential |
---|
| 156 | typename ResGraphType::NodeIt n; |
---|
| 157 | for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { |
---|
| 158 | potential[n] += dijkstra.distMap()[n]; |
---|
| 159 | } |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | |
---|
| 163 | //Augmenting on the sortest path |
---|
| 164 | Node n=t; |
---|
| 165 | ResGraphEdge e; |
---|
| 166 | while (n!=s){ |
---|
| 167 | e = dijkstra.pred(n); |
---|
| 168 | n = dijkstra.predNode(n); |
---|
| 169 | res_graph.augment(e,1); |
---|
| 170 | //Let's update the total length |
---|
| 171 | if (res_graph.forward(e)) |
---|
| 172 | total_length += length[e]; |
---|
| 173 | else |
---|
| 174 | total_length -= length[e]; |
---|
| 175 | } |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | } |
---|
| 179 | |
---|
| 180 | |
---|
| 181 | return i; |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | ///This function gives back the total length of the found paths. |
---|
| 188 | ///Assumes that \c run() has been run and nothing changed since then. |
---|
| 189 | Length totalLength(){ |
---|
| 190 | return total_length; |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must |
---|
| 194 | ///be called before using this function. |
---|
| 195 | const EdgeIntMap &getFlow() const { return flow;} |
---|
| 196 | |
---|
| 197 | ///Returns a const reference to the NodeMap \c potential (the dual solution). |
---|
| 198 | /// \pre \ref run() must be called before using this function. |
---|
| 199 | const EdgeIntMap &getPotential() const { return potential;} |
---|
| 200 | |
---|
| 201 | ///This function checks, whether the given solution is optimal |
---|
| 202 | ///Running after a \c run() should return with true |
---|
| 203 | ///In this "state of the art" this only check optimality, doesn't bother with feasibility |
---|
| 204 | /// |
---|
| 205 | ///\todo Is this OK here? |
---|
| 206 | bool checkComplementarySlackness(){ |
---|
| 207 | Length mod_pot; |
---|
| 208 | Length fl_e; |
---|
| 209 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ |
---|
| 210 | //C^{\Pi}_{i,j} |
---|
| 211 | mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)]; |
---|
| 212 | fl_e = flow[e]; |
---|
| 213 | // std::cout << fl_e << std::endl; |
---|
| 214 | if (0<fl_e && fl_e<capacity[e]){ |
---|
| 215 | if (mod_pot != 0) |
---|
| 216 | return false; |
---|
| 217 | } |
---|
| 218 | else{ |
---|
| 219 | if (mod_pot > 0 && fl_e != 0) |
---|
| 220 | return false; |
---|
| 221 | if (mod_pot < 0 && fl_e != capacity[e]) |
---|
| 222 | return false; |
---|
| 223 | } |
---|
| 224 | } |
---|
| 225 | return true; |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | /* |
---|
| 229 | ///\todo To be implemented later |
---|
| 230 | |
---|
| 231 | ///This function gives back the \c j-th path in argument p. |
---|
| 232 | ///Assumes that \c run() has been run and nothing changed since then. |
---|
| 233 | /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path. |
---|
| 234 | template<typename DirPath> |
---|
| 235 | void getPath(DirPath& p, int j){ |
---|
| 236 | p.clear(); |
---|
| 237 | typename DirPath::Builder B(p); |
---|
| 238 | for(typename std::vector<Edge>::iterator i=paths[j].begin(); |
---|
| 239 | i!=paths[j].end(); ++i ){ |
---|
| 240 | B.pushBack(*i); |
---|
| 241 | } |
---|
| 242 | |
---|
| 243 | B.commit(); |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | */ |
---|
| 247 | |
---|
| 248 | }; //class MinCostFlows |
---|
| 249 | |
---|
| 250 | ///@} |
---|
| 251 | |
---|
| 252 | } //namespace hugo |
---|
| 253 | |
---|
| 254 | #endif //HUGO_MINCOSTFLOW_H |
---|