[610] | 1 | // -*- c++ -*- |
---|
| 2 | #ifndef HUGO_MINLENGTHPATHS_H |
---|
| 3 | #define HUGO_MINLENGTHPATHS_H |
---|
| 4 | |
---|
[759] | 5 | ///\ingroup flowalgs |
---|
[610] | 6 | ///\file |
---|
| 7 | ///\brief An algorithm for finding k paths of minimal total length. |
---|
| 8 | |
---|
[611] | 9 | |
---|
[610] | 10 | //#include <hugo/dijkstra.h> |
---|
| 11 | //#include <hugo/graph_wrapper.h> |
---|
| 12 | #include <hugo/maps.h> |
---|
| 13 | #include <vector> |
---|
| 14 | #include <hugo/mincostflows.h> |
---|
| 15 | |
---|
| 16 | namespace hugo { |
---|
| 17 | |
---|
[759] | 18 | /// \addtogroup flowalgs |
---|
[610] | 19 | /// @{ |
---|
| 20 | |
---|
| 21 | ///\brief Implementation of an algorithm for finding k paths between 2 nodes |
---|
| 22 | /// of minimal total length |
---|
| 23 | /// |
---|
| 24 | /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements |
---|
| 25 | /// an algorithm for finding k edge-disjoint paths |
---|
| 26 | /// from a given source node to a given target node in an |
---|
| 27 | /// edge-weighted directed graph having minimal total weigth (length). |
---|
| 28 | /// |
---|
| 29 | ///\warning It is assumed that the lengths are positive, since the |
---|
| 30 | /// general flow-decomposition is not implemented yet. |
---|
| 31 | /// |
---|
| 32 | ///\author Attila Bernath |
---|
| 33 | template <typename Graph, typename LengthMap> |
---|
| 34 | class MinLengthPaths{ |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | typedef typename LengthMap::ValueType Length; |
---|
| 38 | |
---|
| 39 | typedef typename Graph::Node Node; |
---|
| 40 | typedef typename Graph::NodeIt NodeIt; |
---|
| 41 | typedef typename Graph::Edge Edge; |
---|
| 42 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 43 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
| 44 | |
---|
| 45 | typedef ConstMap<Edge,int> ConstMap; |
---|
| 46 | |
---|
| 47 | //Input |
---|
| 48 | const Graph& G; |
---|
| 49 | |
---|
| 50 | //Auxiliary variables |
---|
| 51 | //This is the capacity map for the mincostflow problem |
---|
| 52 | ConstMap const1map; |
---|
| 53 | //This MinCostFlows instance will actually solve the problem |
---|
| 54 | MinCostFlows<Graph, LengthMap, ConstMap> mincost_flow; |
---|
| 55 | |
---|
| 56 | //Container to store found paths |
---|
| 57 | std::vector< std::vector<Edge> > paths; |
---|
| 58 | |
---|
| 59 | public : |
---|
| 60 | |
---|
| 61 | |
---|
| 62 | MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), |
---|
| 63 | const1map(1), mincost_flow(_G, _length, const1map){} |
---|
| 64 | |
---|
| 65 | ///Runs the algorithm. |
---|
| 66 | |
---|
| 67 | ///Runs the algorithm. |
---|
| 68 | ///Returns k if there are at least k edge-disjoint paths from s to t. |
---|
[851] | 69 | ///Otherwise it returns the number of found edge-disjoint paths from s to t. |
---|
[610] | 70 | int run(Node s, Node t, int k) { |
---|
| 71 | |
---|
| 72 | int i = mincost_flow.run(s,t,k); |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | //Let's find the paths |
---|
| 77 | //We put the paths into stl vectors (as an inner representation). |
---|
| 78 | //In the meantime we lose the information stored in 'reversed'. |
---|
| 79 | //We suppose the lengths to be positive now. |
---|
| 80 | |
---|
| 81 | //We don't want to change the flow of mincost_flow, so we make a copy |
---|
| 82 | //The name here suggests that the flow has only 0/1 values. |
---|
| 83 | EdgeIntMap reversed(G); |
---|
| 84 | |
---|
[788] | 85 | for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) |
---|
[610] | 86 | reversed[e] = mincost_flow.getFlow()[e]; |
---|
| 87 | |
---|
| 88 | paths.clear(); |
---|
| 89 | //total_length=0; |
---|
| 90 | paths.resize(k); |
---|
| 91 | for (int j=0; j<i; ++j){ |
---|
| 92 | Node n=s; |
---|
| 93 | OutEdgeIt e; |
---|
| 94 | |
---|
| 95 | while (n!=t){ |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | G.first(e,n); |
---|
| 99 | |
---|
| 100 | while (!reversed[e]){ |
---|
[776] | 101 | ++e; |
---|
[610] | 102 | } |
---|
| 103 | n = G.head(e); |
---|
| 104 | paths[j].push_back(e); |
---|
| 105 | //total_length += length[e]; |
---|
| 106 | reversed[e] = 1-reversed[e]; |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | } |
---|
| 110 | return i; |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | |
---|
[851] | 114 | ///Total length of the paths |
---|
| 115 | |
---|
[610] | 116 | ///This function gives back the total length of the found paths. |
---|
[851] | 117 | ///\pre \ref run() must |
---|
| 118 | ///be called before using this function. |
---|
[610] | 119 | Length totalLength(){ |
---|
| 120 | return mincost_flow.totalLength(); |
---|
| 121 | } |
---|
| 122 | |
---|
[851] | 123 | ///Return the found flow. |
---|
| 124 | |
---|
| 125 | ///This function returns a const reference to the EdgeMap \c flow. |
---|
| 126 | ///\pre \ref run() must |
---|
[610] | 127 | ///be called before using this function. |
---|
| 128 | const EdgeIntMap &getFlow() const { return mincost_flow.flow;} |
---|
| 129 | |
---|
[851] | 130 | /// Return the optimal dual solution |
---|
| 131 | |
---|
| 132 | ///This function returns a const reference to the NodeMap |
---|
| 133 | ///\c potential (the dual solution). |
---|
[610] | 134 | /// \pre \ref run() must be called before using this function. |
---|
| 135 | const EdgeIntMap &getPotential() const { return mincost_flow.potential;} |
---|
| 136 | |
---|
[851] | 137 | ///Checks whether the complementary slackness holds. |
---|
| 138 | |
---|
[610] | 139 | ///This function checks, whether the given solution is optimal |
---|
| 140 | ///Running after a \c run() should return with true |
---|
[851] | 141 | ///Currently this function only checks optimality, |
---|
| 142 | ///doesn't bother with feasibility |
---|
[610] | 143 | /// |
---|
| 144 | ///\todo Is this OK here? |
---|
| 145 | bool checkComplementarySlackness(){ |
---|
| 146 | return mincost_flow.checkComplementarySlackness(); |
---|
| 147 | } |
---|
| 148 | |
---|
[851] | 149 | ///Read the found paths. |
---|
| 150 | |
---|
[610] | 151 | ///This function gives back the \c j-th path in argument p. |
---|
| 152 | ///Assumes that \c run() has been run and nothing changed since then. |
---|
[851] | 153 | /// \warning It is assumed that \c p is constructed to |
---|
| 154 | ///be a path of graph \c G. |
---|
| 155 | ///If \c j is not less than the result of previous \c run, |
---|
| 156 | ///then the result here will be an empty path (\c j can be 0 as well). |
---|
| 157 | template<typename Path> |
---|
| 158 | void getPath(Path& p, size_t j){ |
---|
[610] | 159 | |
---|
| 160 | p.clear(); |
---|
| 161 | if (j>paths.size()-1){ |
---|
| 162 | return; |
---|
| 163 | } |
---|
| 164 | typename DirPath::Builder B(p); |
---|
| 165 | for(typename std::vector<Edge>::iterator i=paths[j].begin(); |
---|
| 166 | i!=paths[j].end(); ++i ){ |
---|
| 167 | B.pushBack(*i); |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | B.commit(); |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | }; //class MinLengthPaths |
---|
| 174 | |
---|
| 175 | ///@} |
---|
| 176 | |
---|
| 177 | } //namespace hugo |
---|
| 178 | |
---|
| 179 | #endif //HUGO_MINLENGTHPATHS_H |
---|