[836] | 1 | // -*- C++ -*- |
---|
| 2 | #ifndef HUGO_PREFLOW_H |
---|
| 3 | #define HUGO_PREFLOW_H |
---|
| 4 | |
---|
| 5 | #include <vector> |
---|
| 6 | #include <queue> |
---|
| 7 | |
---|
| 8 | #include <hugo/invalid.h> |
---|
| 9 | #include <hugo/maps.h> |
---|
| 10 | |
---|
| 11 | /// \file |
---|
| 12 | /// \ingroup flowalgs |
---|
[874] | 13 | /// Implementation of the preflow algorithm. |
---|
[836] | 14 | |
---|
| 15 | namespace hugo { |
---|
| 16 | |
---|
| 17 | /// \addtogroup flowalgs |
---|
| 18 | /// @{ |
---|
| 19 | |
---|
[851] | 20 | ///%Preflow algorithms class. |
---|
[836] | 21 | |
---|
| 22 | ///This class provides an implementation of the \e preflow \e |
---|
| 23 | ///algorithm producing a flow of maximum value in a directed |
---|
| 24 | ///graph. The preflow algorithms are the fastest max flow algorithms |
---|
[851] | 25 | ///up to now. The \e source node, the \e target node, the \e |
---|
[836] | 26 | ///capacity of the edges and the \e starting \e flow value of the |
---|
| 27 | ///edges should be passed to the algorithm through the |
---|
| 28 | ///constructor. It is possible to change these quantities using the |
---|
| 29 | ///functions \ref setSource, \ref setTarget, \ref setCap and \ref |
---|
| 30 | ///setFlow. |
---|
| 31 | /// |
---|
[851] | 32 | ///After running \ref phase1() or \ref preflow(), the actual flow |
---|
[836] | 33 | ///value can be obtained by calling \ref flowValue(). The minimum |
---|
[851] | 34 | ///value cut can be written into a <tt>bool</tt> node map by |
---|
| 35 | ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes |
---|
[836] | 36 | ///the inclusionwise minimum and maximum of the minimum value cuts, |
---|
| 37 | ///resp.) |
---|
| 38 | /// |
---|
| 39 | ///\param Graph The directed graph type the algorithm runs on. |
---|
| 40 | ///\param Num The number type of the capacities and the flow values. |
---|
| 41 | ///\param CapMap The capacity map type. |
---|
| 42 | ///\param FlowMap The flow map type. |
---|
| 43 | /// |
---|
| 44 | ///\author Jacint Szabo |
---|
| 45 | template <typename Graph, typename Num, |
---|
| 46 | typename CapMap=typename Graph::template EdgeMap<Num>, |
---|
| 47 | typename FlowMap=typename Graph::template EdgeMap<Num> > |
---|
| 48 | class Preflow { |
---|
| 49 | protected: |
---|
| 50 | typedef typename Graph::Node Node; |
---|
| 51 | typedef typename Graph::NodeIt NodeIt; |
---|
| 52 | typedef typename Graph::EdgeIt EdgeIt; |
---|
| 53 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 54 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
| 55 | |
---|
| 56 | typedef typename Graph::template NodeMap<Node> NNMap; |
---|
| 57 | typedef typename std::vector<Node> VecNode; |
---|
| 58 | |
---|
| 59 | const Graph* g; |
---|
| 60 | Node s; |
---|
| 61 | Node t; |
---|
| 62 | const CapMap* capacity; |
---|
| 63 | FlowMap* flow; |
---|
| 64 | int n; //the number of nodes of G |
---|
| 65 | |
---|
| 66 | typename Graph::template NodeMap<int> level; |
---|
| 67 | typename Graph::template NodeMap<Num> excess; |
---|
| 68 | |
---|
| 69 | // constants used for heuristics |
---|
| 70 | static const int H0=20; |
---|
| 71 | static const int H1=1; |
---|
| 72 | |
---|
| 73 | public: |
---|
| 74 | |
---|
| 75 | ///Indicates the property of the starting flow map. |
---|
| 76 | |
---|
| 77 | ///Indicates the property of the starting flow map. The meanings are as follows: |
---|
| 78 | ///- \c ZERO_FLOW: constant zero flow |
---|
| 79 | ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to |
---|
| 80 | ///the sum of the out-flows in every node except the \e source and |
---|
| 81 | ///the \e target. |
---|
| 82 | ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at |
---|
| 83 | ///least the sum of the out-flows in every node except the \e source. |
---|
| 84 | ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be |
---|
| 85 | ///set to the constant zero flow in the beginning of the algorithm in this case. |
---|
| 86 | /// |
---|
| 87 | enum FlowEnum{ |
---|
| 88 | NO_FLOW, |
---|
| 89 | ZERO_FLOW, |
---|
| 90 | GEN_FLOW, |
---|
| 91 | PRE_FLOW |
---|
| 92 | }; |
---|
| 93 | |
---|
| 94 | ///Indicates the state of the preflow algorithm. |
---|
| 95 | |
---|
| 96 | ///Indicates the state of the preflow algorithm. The meanings are as follows: |
---|
| 97 | ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state. |
---|
| 98 | ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1 |
---|
| 99 | ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2() |
---|
| 100 | /// |
---|
| 101 | enum StatusEnum { |
---|
| 102 | AFTER_NOTHING, |
---|
| 103 | AFTER_PREFLOW_PHASE_1, |
---|
| 104 | AFTER_PREFLOW_PHASE_2 |
---|
| 105 | }; |
---|
| 106 | |
---|
| 107 | protected: |
---|
| 108 | FlowEnum flow_prop; |
---|
| 109 | StatusEnum status; // Do not needle this flag only if necessary. |
---|
| 110 | |
---|
| 111 | public: |
---|
| 112 | ///The constructor of the class. |
---|
| 113 | |
---|
| 114 | ///The constructor of the class. |
---|
| 115 | ///\param _G The directed graph the algorithm runs on. |
---|
| 116 | ///\param _s The source node. |
---|
| 117 | ///\param _t The target node. |
---|
| 118 | ///\param _capacity The capacity of the edges. |
---|
| 119 | ///\param _flow The flow of the edges. |
---|
| 120 | ///Except the graph, all of these parameters can be reset by |
---|
| 121 | ///calling \ref setSource, \ref setTarget, \ref setCap and \ref |
---|
| 122 | ///setFlow, resp. |
---|
| 123 | Preflow(const Graph& _G, Node _s, Node _t, |
---|
| 124 | const CapMap& _capacity, FlowMap& _flow) : |
---|
| 125 | g(&_G), s(_s), t(_t), capacity(&_capacity), |
---|
| 126 | flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), |
---|
| 127 | flow_prop(NO_FLOW), status(AFTER_NOTHING) { } |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | ///Runs the preflow algorithm. |
---|
| 132 | |
---|
[851] | 133 | ///Runs the preflow algorithm. |
---|
| 134 | /// |
---|
[836] | 135 | void run() { |
---|
| 136 | phase1(flow_prop); |
---|
| 137 | phase2(); |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | ///Runs the preflow algorithm. |
---|
| 141 | |
---|
| 142 | ///Runs the preflow algorithm. |
---|
| 143 | ///\pre The starting flow map must be |
---|
| 144 | /// - a constant zero flow if \c fp is \c ZERO_FLOW, |
---|
| 145 | /// - an arbitrary flow if \c fp is \c GEN_FLOW, |
---|
| 146 | /// - an arbitrary preflow if \c fp is \c PRE_FLOW, |
---|
| 147 | /// - any map if \c fp is NO_FLOW. |
---|
| 148 | ///If the starting flow map is a flow or a preflow then |
---|
| 149 | ///the algorithm terminates faster. |
---|
| 150 | void run(FlowEnum fp) { |
---|
| 151 | flow_prop=fp; |
---|
| 152 | run(); |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | ///Runs the first phase of the preflow algorithm. |
---|
| 156 | |
---|
| 157 | ///The preflow algorithm consists of two phases, this method runs the |
---|
| 158 | ///first phase. After the first phase the maximum flow value and a |
---|
| 159 | ///minimum value cut can already be computed, though a maximum flow |
---|
| 160 | ///is not yet obtained. So after calling this method \ref flowValue |
---|
| 161 | ///and \ref minCut gives proper results. |
---|
[851] | 162 | ///\warning \ref minMinCut and \ref maxMinCut do not |
---|
[836] | 163 | ///give minimum value cuts unless calling \ref phase2. |
---|
| 164 | ///\pre The starting flow must be |
---|
| 165 | /// - a constant zero flow if \c fp is \c ZERO_FLOW, |
---|
| 166 | /// - an arbitary flow if \c fp is \c GEN_FLOW, |
---|
| 167 | /// - an arbitary preflow if \c fp is \c PRE_FLOW, |
---|
| 168 | /// - any map if \c fp is NO_FLOW. |
---|
| 169 | void phase1(FlowEnum fp) |
---|
| 170 | { |
---|
| 171 | flow_prop=fp; |
---|
| 172 | phase1(); |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | ///Runs the first phase of the preflow algorithm. |
---|
| 177 | |
---|
| 178 | ///The preflow algorithm consists of two phases, this method runs the |
---|
| 179 | ///first phase. After the first phase the maximum flow value and a |
---|
| 180 | ///minimum value cut can already be computed, though a maximum flow |
---|
| 181 | ///is not yet obtained. So after calling this method \ref flowValue |
---|
| 182 | ///and \ref actMinCut gives proper results. |
---|
[851] | 183 | ///\warning \ref minCut, \ref minMinCut and \ref maxMinCut do not |
---|
[836] | 184 | ///give minimum value cuts unless calling \ref phase2. |
---|
| 185 | void phase1() |
---|
| 186 | { |
---|
| 187 | int heur0=(int)(H0*n); //time while running 'bound decrease' |
---|
| 188 | int heur1=(int)(H1*n); //time while running 'highest label' |
---|
| 189 | int heur=heur1; //starting time interval (#of relabels) |
---|
| 190 | int numrelabel=0; |
---|
| 191 | |
---|
| 192 | bool what_heur=1; |
---|
| 193 | //It is 0 in case 'bound decrease' and 1 in case 'highest label' |
---|
| 194 | |
---|
| 195 | bool end=false; |
---|
| 196 | //Needed for 'bound decrease', true means no active |
---|
| 197 | //nodes are above bound b. |
---|
| 198 | |
---|
| 199 | int k=n-2; //bound on the highest level under n containing a node |
---|
| 200 | int b=k; //bound on the highest level under n of an active node |
---|
| 201 | |
---|
| 202 | VecNode first(n, INVALID); |
---|
| 203 | NNMap next(*g, INVALID); |
---|
| 204 | |
---|
| 205 | NNMap left(*g, INVALID); |
---|
| 206 | NNMap right(*g, INVALID); |
---|
| 207 | VecNode level_list(n,INVALID); |
---|
| 208 | //List of the nodes in level i<n, set to n. |
---|
| 209 | |
---|
| 210 | preflowPreproc(first, next, level_list, left, right); |
---|
| 211 | |
---|
| 212 | //Push/relabel on the highest level active nodes. |
---|
| 213 | while ( true ) { |
---|
| 214 | if ( b == 0 ) { |
---|
| 215 | if ( !what_heur && !end && k > 0 ) { |
---|
| 216 | b=k; |
---|
| 217 | end=true; |
---|
| 218 | } else break; |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | if ( first[b]==INVALID ) --b; |
---|
| 222 | else { |
---|
| 223 | end=false; |
---|
| 224 | Node w=first[b]; |
---|
| 225 | first[b]=next[w]; |
---|
| 226 | int newlevel=push(w, next, first); |
---|
| 227 | if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, |
---|
| 228 | left, right, b, k, what_heur); |
---|
| 229 | |
---|
| 230 | ++numrelabel; |
---|
| 231 | if ( numrelabel >= heur ) { |
---|
| 232 | numrelabel=0; |
---|
| 233 | if ( what_heur ) { |
---|
| 234 | what_heur=0; |
---|
| 235 | heur=heur0; |
---|
| 236 | end=false; |
---|
| 237 | } else { |
---|
| 238 | what_heur=1; |
---|
| 239 | heur=heur1; |
---|
| 240 | b=k; |
---|
| 241 | } |
---|
| 242 | } |
---|
| 243 | } |
---|
| 244 | } |
---|
| 245 | flow_prop=PRE_FLOW; |
---|
| 246 | status=AFTER_PREFLOW_PHASE_1; |
---|
| 247 | } |
---|
| 248 | // Heuristics: |
---|
| 249 | // 2 phase |
---|
| 250 | // gap |
---|
| 251 | // list 'level_list' on the nodes on level i implemented by hand |
---|
| 252 | // stack 'active' on the active nodes on level i |
---|
| 253 | // runs heuristic 'highest label' for H1*n relabels |
---|
| 254 | // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' |
---|
| 255 | // Parameters H0 and H1 are initialized to 20 and 1. |
---|
| 256 | |
---|
| 257 | |
---|
| 258 | ///Runs the second phase of the preflow algorithm. |
---|
| 259 | |
---|
| 260 | ///The preflow algorithm consists of two phases, this method runs |
---|
| 261 | ///the second phase. After calling \ref phase1 and then |
---|
| 262 | ///\ref phase2 the methods \ref flowValue, \ref minCut, |
---|
| 263 | ///\ref minMinCut and \ref maxMinCut give proper results. |
---|
| 264 | ///\pre \ref phase1 must be called before. |
---|
| 265 | void phase2() |
---|
| 266 | { |
---|
| 267 | |
---|
| 268 | int k=n-2; //bound on the highest level under n containing a node |
---|
| 269 | int b=k; //bound on the highest level under n of an active node |
---|
| 270 | |
---|
| 271 | |
---|
| 272 | VecNode first(n, INVALID); |
---|
| 273 | NNMap next(*g, INVALID); |
---|
| 274 | level.set(s,0); |
---|
| 275 | std::queue<Node> bfs_queue; |
---|
| 276 | bfs_queue.push(s); |
---|
| 277 | |
---|
| 278 | while ( !bfs_queue.empty() ) { |
---|
| 279 | |
---|
| 280 | Node v=bfs_queue.front(); |
---|
| 281 | bfs_queue.pop(); |
---|
| 282 | int l=level[v]+1; |
---|
| 283 | |
---|
| 284 | for(InEdgeIt e(*g,v); e!=INVALID; ++e) { |
---|
| 285 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
| 286 | Node u=g->tail(e); |
---|
| 287 | if ( level[u] >= n ) { |
---|
| 288 | bfs_queue.push(u); |
---|
| 289 | level.set(u, l); |
---|
| 290 | if ( excess[u] > 0 ) { |
---|
| 291 | next.set(u,first[l]); |
---|
| 292 | first[l]=u; |
---|
| 293 | } |
---|
| 294 | } |
---|
| 295 | } |
---|
| 296 | |
---|
| 297 | for(OutEdgeIt e(*g,v); e!=INVALID; ++e) { |
---|
| 298 | if ( 0 >= (*flow)[e] ) continue; |
---|
| 299 | Node u=g->head(e); |
---|
| 300 | if ( level[u] >= n ) { |
---|
| 301 | bfs_queue.push(u); |
---|
| 302 | level.set(u, l); |
---|
| 303 | if ( excess[u] > 0 ) { |
---|
| 304 | next.set(u,first[l]); |
---|
| 305 | first[l]=u; |
---|
| 306 | } |
---|
| 307 | } |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | b=n-2; |
---|
| 311 | |
---|
| 312 | while ( true ) { |
---|
| 313 | |
---|
| 314 | if ( b == 0 ) break; |
---|
| 315 | if ( first[b]==INVALID ) --b; |
---|
| 316 | else { |
---|
| 317 | Node w=first[b]; |
---|
| 318 | first[b]=next[w]; |
---|
| 319 | int newlevel=push(w,next, first); |
---|
| 320 | |
---|
| 321 | //relabel |
---|
| 322 | if ( excess[w] > 0 ) { |
---|
| 323 | level.set(w,++newlevel); |
---|
| 324 | next.set(w,first[newlevel]); |
---|
| 325 | first[newlevel]=w; |
---|
| 326 | b=newlevel; |
---|
| 327 | } |
---|
| 328 | } |
---|
| 329 | } // while(true) |
---|
| 330 | flow_prop=GEN_FLOW; |
---|
| 331 | status=AFTER_PREFLOW_PHASE_2; |
---|
| 332 | } |
---|
| 333 | |
---|
| 334 | /// Returns the value of the maximum flow. |
---|
| 335 | |
---|
| 336 | /// Returns the value of the maximum flow by returning the excess |
---|
| 337 | /// of the target node \ref t. This value equals to the value of |
---|
| 338 | /// the maximum flow already after running \ref phase1. |
---|
| 339 | Num flowValue() const { |
---|
| 340 | return excess[t]; |
---|
| 341 | } |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | ///Returns a minimum value cut. |
---|
| 345 | |
---|
| 346 | ///Sets \c M to the characteristic vector of a minimum value |
---|
| 347 | ///cut. This method can be called both after running \ref |
---|
| 348 | ///phase1 and \ref phase2. It is much faster after |
---|
[849] | 349 | ///\ref phase1. \pre M should be a bool-valued node-map. \pre |
---|
[836] | 350 | ///If \ref mincut is called after \ref phase2 then M should |
---|
| 351 | ///be initialized to false. |
---|
| 352 | template<typename _CutMap> |
---|
| 353 | void minCut(_CutMap& M) const { |
---|
| 354 | switch ( status ) { |
---|
| 355 | case AFTER_PREFLOW_PHASE_1: |
---|
| 356 | for(NodeIt v(*g); v!=INVALID; ++v) { |
---|
| 357 | if (level[v] < n) { |
---|
| 358 | M.set(v, false); |
---|
| 359 | } else { |
---|
| 360 | M.set(v, true); |
---|
| 361 | } |
---|
| 362 | } |
---|
| 363 | break; |
---|
| 364 | case AFTER_PREFLOW_PHASE_2: |
---|
| 365 | minMinCut(M); |
---|
| 366 | break; |
---|
| 367 | case AFTER_NOTHING: |
---|
| 368 | break; |
---|
| 369 | } |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | ///Returns the inclusionwise minimum of the minimum value cuts. |
---|
| 373 | |
---|
| 374 | ///Sets \c M to the characteristic vector of the minimum value cut |
---|
| 375 | ///which is inclusionwise minimum. It is computed by processing a |
---|
| 376 | ///bfs from the source node \c s in the residual graph. \pre M |
---|
| 377 | ///should be a node map of bools initialized to false. \pre \ref |
---|
| 378 | ///phase2 should already be run. |
---|
| 379 | template<typename _CutMap> |
---|
| 380 | void minMinCut(_CutMap& M) const { |
---|
| 381 | |
---|
| 382 | std::queue<Node> queue; |
---|
| 383 | M.set(s,true); |
---|
| 384 | queue.push(s); |
---|
| 385 | |
---|
| 386 | while (!queue.empty()) { |
---|
| 387 | Node w=queue.front(); |
---|
| 388 | queue.pop(); |
---|
| 389 | |
---|
| 390 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { |
---|
| 391 | Node v=g->head(e); |
---|
| 392 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
| 393 | queue.push(v); |
---|
| 394 | M.set(v, true); |
---|
| 395 | } |
---|
| 396 | } |
---|
| 397 | |
---|
| 398 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { |
---|
| 399 | Node v=g->tail(e); |
---|
| 400 | if (!M[v] && (*flow)[e] > 0 ) { |
---|
| 401 | queue.push(v); |
---|
| 402 | M.set(v, true); |
---|
| 403 | } |
---|
| 404 | } |
---|
| 405 | } |
---|
| 406 | } |
---|
| 407 | |
---|
| 408 | ///Returns the inclusionwise maximum of the minimum value cuts. |
---|
| 409 | |
---|
| 410 | ///Sets \c M to the characteristic vector of the minimum value cut |
---|
| 411 | ///which is inclusionwise maximum. It is computed by processing a |
---|
| 412 | ///backward bfs from the target node \c t in the residual graph. |
---|
| 413 | ///\pre \ref phase2() or preflow() should already be run. |
---|
| 414 | template<typename _CutMap> |
---|
| 415 | void maxMinCut(_CutMap& M) const { |
---|
| 416 | |
---|
| 417 | for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true); |
---|
| 418 | |
---|
| 419 | std::queue<Node> queue; |
---|
| 420 | |
---|
| 421 | M.set(t,false); |
---|
| 422 | queue.push(t); |
---|
| 423 | |
---|
| 424 | while (!queue.empty()) { |
---|
| 425 | Node w=queue.front(); |
---|
| 426 | queue.pop(); |
---|
| 427 | |
---|
| 428 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { |
---|
| 429 | Node v=g->tail(e); |
---|
| 430 | if (M[v] && (*flow)[e] < (*capacity)[e] ) { |
---|
| 431 | queue.push(v); |
---|
| 432 | M.set(v, false); |
---|
| 433 | } |
---|
| 434 | } |
---|
| 435 | |
---|
| 436 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { |
---|
| 437 | Node v=g->head(e); |
---|
| 438 | if (M[v] && (*flow)[e] > 0 ) { |
---|
| 439 | queue.push(v); |
---|
| 440 | M.set(v, false); |
---|
| 441 | } |
---|
| 442 | } |
---|
| 443 | } |
---|
| 444 | } |
---|
| 445 | |
---|
| 446 | ///Sets the source node to \c _s. |
---|
| 447 | |
---|
| 448 | ///Sets the source node to \c _s. |
---|
| 449 | /// |
---|
| 450 | void setSource(Node _s) { |
---|
| 451 | s=_s; |
---|
| 452 | if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW; |
---|
| 453 | status=AFTER_NOTHING; |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | ///Sets the target node to \c _t. |
---|
| 457 | |
---|
| 458 | ///Sets the target node to \c _t. |
---|
| 459 | /// |
---|
| 460 | void setTarget(Node _t) { |
---|
| 461 | t=_t; |
---|
| 462 | if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW; |
---|
| 463 | status=AFTER_NOTHING; |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | /// Sets the edge map of the capacities to _cap. |
---|
| 467 | |
---|
| 468 | /// Sets the edge map of the capacities to _cap. |
---|
| 469 | /// |
---|
| 470 | void setCap(const CapMap& _cap) { |
---|
| 471 | capacity=&_cap; |
---|
| 472 | status=AFTER_NOTHING; |
---|
| 473 | } |
---|
| 474 | |
---|
| 475 | /// Sets the edge map of the flows to _flow. |
---|
| 476 | |
---|
| 477 | /// Sets the edge map of the flows to _flow. |
---|
| 478 | /// |
---|
| 479 | void setFlow(FlowMap& _flow) { |
---|
| 480 | flow=&_flow; |
---|
| 481 | flow_prop=NO_FLOW; |
---|
| 482 | status=AFTER_NOTHING; |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | |
---|
| 486 | private: |
---|
| 487 | |
---|
| 488 | int push(Node w, NNMap& next, VecNode& first) { |
---|
| 489 | |
---|
| 490 | int lev=level[w]; |
---|
| 491 | Num exc=excess[w]; |
---|
| 492 | int newlevel=n; //bound on the next level of w |
---|
| 493 | |
---|
| 494 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { |
---|
| 495 | if ( (*flow)[e] >= (*capacity)[e] ) continue; |
---|
| 496 | Node v=g->head(e); |
---|
| 497 | |
---|
| 498 | if( lev > level[v] ) { //Push is allowed now |
---|
| 499 | |
---|
| 500 | if ( excess[v]<=0 && v!=t && v!=s ) { |
---|
| 501 | next.set(v,first[level[v]]); |
---|
| 502 | first[level[v]]=v; |
---|
| 503 | } |
---|
| 504 | |
---|
| 505 | Num cap=(*capacity)[e]; |
---|
| 506 | Num flo=(*flow)[e]; |
---|
| 507 | Num remcap=cap-flo; |
---|
| 508 | |
---|
| 509 | if ( remcap >= exc ) { //A nonsaturating push. |
---|
| 510 | |
---|
| 511 | flow->set(e, flo+exc); |
---|
| 512 | excess.set(v, excess[v]+exc); |
---|
| 513 | exc=0; |
---|
| 514 | break; |
---|
| 515 | |
---|
| 516 | } else { //A saturating push. |
---|
| 517 | flow->set(e, cap); |
---|
| 518 | excess.set(v, excess[v]+remcap); |
---|
| 519 | exc-=remcap; |
---|
| 520 | } |
---|
| 521 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
---|
| 522 | } //for out edges wv |
---|
| 523 | |
---|
| 524 | if ( exc > 0 ) { |
---|
| 525 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { |
---|
| 526 | |
---|
| 527 | if( (*flow)[e] <= 0 ) continue; |
---|
| 528 | Node v=g->tail(e); |
---|
| 529 | |
---|
| 530 | if( lev > level[v] ) { //Push is allowed now |
---|
| 531 | |
---|
| 532 | if ( excess[v]<=0 && v!=t && v!=s ) { |
---|
| 533 | next.set(v,first[level[v]]); |
---|
| 534 | first[level[v]]=v; |
---|
| 535 | } |
---|
| 536 | |
---|
| 537 | Num flo=(*flow)[e]; |
---|
| 538 | |
---|
| 539 | if ( flo >= exc ) { //A nonsaturating push. |
---|
| 540 | |
---|
| 541 | flow->set(e, flo-exc); |
---|
| 542 | excess.set(v, excess[v]+exc); |
---|
| 543 | exc=0; |
---|
| 544 | break; |
---|
| 545 | } else { //A saturating push. |
---|
| 546 | |
---|
| 547 | excess.set(v, excess[v]+flo); |
---|
| 548 | exc-=flo; |
---|
| 549 | flow->set(e,0); |
---|
| 550 | } |
---|
| 551 | } else if ( newlevel > level[v] ) newlevel = level[v]; |
---|
| 552 | } //for in edges vw |
---|
| 553 | |
---|
| 554 | } // if w still has excess after the out edge for cycle |
---|
| 555 | |
---|
| 556 | excess.set(w, exc); |
---|
| 557 | |
---|
| 558 | return newlevel; |
---|
| 559 | } |
---|
| 560 | |
---|
| 561 | |
---|
| 562 | |
---|
| 563 | void preflowPreproc(VecNode& first, NNMap& next, |
---|
| 564 | VecNode& level_list, NNMap& left, NNMap& right) |
---|
| 565 | { |
---|
| 566 | for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n); |
---|
| 567 | std::queue<Node> bfs_queue; |
---|
| 568 | |
---|
| 569 | if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) { |
---|
| 570 | //Reverse_bfs from t in the residual graph, |
---|
| 571 | //to find the starting level. |
---|
| 572 | level.set(t,0); |
---|
| 573 | bfs_queue.push(t); |
---|
| 574 | |
---|
| 575 | while ( !bfs_queue.empty() ) { |
---|
| 576 | |
---|
| 577 | Node v=bfs_queue.front(); |
---|
| 578 | bfs_queue.pop(); |
---|
| 579 | int l=level[v]+1; |
---|
| 580 | |
---|
| 581 | for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { |
---|
| 582 | if ( (*capacity)[e] <= (*flow)[e] ) continue; |
---|
| 583 | Node w=g->tail(e); |
---|
| 584 | if ( level[w] == n && w != s ) { |
---|
| 585 | bfs_queue.push(w); |
---|
| 586 | Node z=level_list[l]; |
---|
| 587 | if ( z!=INVALID ) left.set(z,w); |
---|
| 588 | right.set(w,z); |
---|
| 589 | level_list[l]=w; |
---|
| 590 | level.set(w, l); |
---|
| 591 | } |
---|
| 592 | } |
---|
| 593 | |
---|
| 594 | for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { |
---|
| 595 | if ( 0 >= (*flow)[e] ) continue; |
---|
| 596 | Node w=g->head(e); |
---|
| 597 | if ( level[w] == n && w != s ) { |
---|
| 598 | bfs_queue.push(w); |
---|
| 599 | Node z=level_list[l]; |
---|
| 600 | if ( z!=INVALID ) left.set(z,w); |
---|
| 601 | right.set(w,z); |
---|
| 602 | level_list[l]=w; |
---|
| 603 | level.set(w, l); |
---|
| 604 | } |
---|
| 605 | } |
---|
| 606 | } //while |
---|
| 607 | } //if |
---|
| 608 | |
---|
| 609 | |
---|
| 610 | switch (flow_prop) { |
---|
| 611 | case NO_FLOW: |
---|
| 612 | for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0); |
---|
| 613 | case ZERO_FLOW: |
---|
| 614 | for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); |
---|
| 615 | |
---|
| 616 | //Reverse_bfs from t, to find the starting level. |
---|
| 617 | level.set(t,0); |
---|
| 618 | bfs_queue.push(t); |
---|
| 619 | |
---|
| 620 | while ( !bfs_queue.empty() ) { |
---|
| 621 | |
---|
| 622 | Node v=bfs_queue.front(); |
---|
| 623 | bfs_queue.pop(); |
---|
| 624 | int l=level[v]+1; |
---|
| 625 | |
---|
| 626 | for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { |
---|
| 627 | Node w=g->tail(e); |
---|
| 628 | if ( level[w] == n && w != s ) { |
---|
| 629 | bfs_queue.push(w); |
---|
| 630 | Node z=level_list[l]; |
---|
| 631 | if ( z!=INVALID ) left.set(z,w); |
---|
| 632 | right.set(w,z); |
---|
| 633 | level_list[l]=w; |
---|
| 634 | level.set(w, l); |
---|
| 635 | } |
---|
| 636 | } |
---|
| 637 | } |
---|
| 638 | |
---|
| 639 | //the starting flow |
---|
| 640 | for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { |
---|
| 641 | Num c=(*capacity)[e]; |
---|
| 642 | if ( c <= 0 ) continue; |
---|
| 643 | Node w=g->head(e); |
---|
| 644 | if ( level[w] < n ) { |
---|
| 645 | if ( excess[w] <= 0 && w!=t ) { //putting into the stack |
---|
| 646 | next.set(w,first[level[w]]); |
---|
| 647 | first[level[w]]=w; |
---|
| 648 | } |
---|
| 649 | flow->set(e, c); |
---|
| 650 | excess.set(w, excess[w]+c); |
---|
| 651 | } |
---|
| 652 | } |
---|
| 653 | break; |
---|
| 654 | |
---|
| 655 | case GEN_FLOW: |
---|
| 656 | for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); |
---|
| 657 | { |
---|
| 658 | Num exc=0; |
---|
| 659 | for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e]; |
---|
| 660 | for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e]; |
---|
| 661 | excess.set(t,exc); |
---|
| 662 | } |
---|
| 663 | |
---|
| 664 | //the starting flow |
---|
| 665 | for(OutEdgeIt e(*g,s); e!=INVALID; ++e) { |
---|
| 666 | Num rem=(*capacity)[e]-(*flow)[e]; |
---|
| 667 | if ( rem <= 0 ) continue; |
---|
| 668 | Node w=g->head(e); |
---|
| 669 | if ( level[w] < n ) { |
---|
| 670 | if ( excess[w] <= 0 && w!=t ) { //putting into the stack |
---|
| 671 | next.set(w,first[level[w]]); |
---|
| 672 | first[level[w]]=w; |
---|
| 673 | } |
---|
| 674 | flow->set(e, (*capacity)[e]); |
---|
| 675 | excess.set(w, excess[w]+rem); |
---|
| 676 | } |
---|
| 677 | } |
---|
| 678 | |
---|
| 679 | for(InEdgeIt e(*g,s); e!=INVALID; ++e) { |
---|
| 680 | if ( (*flow)[e] <= 0 ) continue; |
---|
| 681 | Node w=g->tail(e); |
---|
| 682 | if ( level[w] < n ) { |
---|
| 683 | if ( excess[w] <= 0 && w!=t ) { |
---|
| 684 | next.set(w,first[level[w]]); |
---|
| 685 | first[level[w]]=w; |
---|
| 686 | } |
---|
| 687 | excess.set(w, excess[w]+(*flow)[e]); |
---|
| 688 | flow->set(e, 0); |
---|
| 689 | } |
---|
| 690 | } |
---|
| 691 | break; |
---|
| 692 | |
---|
| 693 | case PRE_FLOW: |
---|
| 694 | //the starting flow |
---|
| 695 | for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { |
---|
| 696 | Num rem=(*capacity)[e]-(*flow)[e]; |
---|
| 697 | if ( rem <= 0 ) continue; |
---|
| 698 | Node w=g->head(e); |
---|
| 699 | if ( level[w] < n ) flow->set(e, (*capacity)[e]); |
---|
| 700 | } |
---|
| 701 | |
---|
| 702 | for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) { |
---|
| 703 | if ( (*flow)[e] <= 0 ) continue; |
---|
| 704 | Node w=g->tail(e); |
---|
| 705 | if ( level[w] < n ) flow->set(e, 0); |
---|
| 706 | } |
---|
| 707 | |
---|
| 708 | //computing the excess |
---|
| 709 | for(NodeIt w(*g); w!=INVALID; ++w) { |
---|
| 710 | Num exc=0; |
---|
| 711 | for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e]; |
---|
| 712 | for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e]; |
---|
| 713 | excess.set(w,exc); |
---|
| 714 | |
---|
| 715 | //putting the active nodes into the stack |
---|
| 716 | int lev=level[w]; |
---|
| 717 | if ( exc > 0 && lev < n && Node(w) != t ) { |
---|
| 718 | next.set(w,first[lev]); |
---|
| 719 | first[lev]=w; |
---|
| 720 | } |
---|
| 721 | } |
---|
| 722 | break; |
---|
| 723 | } //switch |
---|
| 724 | } //preflowPreproc |
---|
| 725 | |
---|
| 726 | |
---|
| 727 | void relabel(Node w, int newlevel, VecNode& first, NNMap& next, |
---|
| 728 | VecNode& level_list, NNMap& left, |
---|
| 729 | NNMap& right, int& b, int& k, bool what_heur ) |
---|
| 730 | { |
---|
| 731 | |
---|
| 732 | int lev=level[w]; |
---|
| 733 | |
---|
| 734 | Node right_n=right[w]; |
---|
| 735 | Node left_n=left[w]; |
---|
| 736 | |
---|
| 737 | //unlacing starts |
---|
| 738 | if ( right_n!=INVALID ) { |
---|
| 739 | if ( left_n!=INVALID ) { |
---|
| 740 | right.set(left_n, right_n); |
---|
| 741 | left.set(right_n, left_n); |
---|
| 742 | } else { |
---|
| 743 | level_list[lev]=right_n; |
---|
| 744 | left.set(right_n, INVALID); |
---|
| 745 | } |
---|
| 746 | } else { |
---|
| 747 | if ( left_n!=INVALID ) { |
---|
| 748 | right.set(left_n, INVALID); |
---|
| 749 | } else { |
---|
| 750 | level_list[lev]=INVALID; |
---|
| 751 | } |
---|
| 752 | } |
---|
| 753 | //unlacing ends |
---|
| 754 | |
---|
| 755 | if ( level_list[lev]==INVALID ) { |
---|
| 756 | |
---|
| 757 | //gapping starts |
---|
| 758 | for (int i=lev; i!=k ; ) { |
---|
| 759 | Node v=level_list[++i]; |
---|
| 760 | while ( v!=INVALID ) { |
---|
| 761 | level.set(v,n); |
---|
| 762 | v=right[v]; |
---|
| 763 | } |
---|
| 764 | level_list[i]=INVALID; |
---|
| 765 | if ( !what_heur ) first[i]=INVALID; |
---|
| 766 | } |
---|
| 767 | |
---|
| 768 | level.set(w,n); |
---|
| 769 | b=lev-1; |
---|
| 770 | k=b; |
---|
| 771 | //gapping ends |
---|
| 772 | |
---|
| 773 | } else { |
---|
| 774 | |
---|
| 775 | if ( newlevel == n ) level.set(w,n); |
---|
| 776 | else { |
---|
| 777 | level.set(w,++newlevel); |
---|
| 778 | next.set(w,first[newlevel]); |
---|
| 779 | first[newlevel]=w; |
---|
| 780 | if ( what_heur ) b=newlevel; |
---|
| 781 | if ( k < newlevel ) ++k; //now k=newlevel |
---|
| 782 | Node z=level_list[newlevel]; |
---|
| 783 | if ( z!=INVALID ) left.set(z,w); |
---|
| 784 | right.set(w,z); |
---|
| 785 | left.set(w,INVALID); |
---|
| 786 | level_list[newlevel]=w; |
---|
| 787 | } |
---|
| 788 | } |
---|
| 789 | } //relabel |
---|
| 790 | |
---|
| 791 | }; |
---|
| 792 | } //namespace hugo |
---|
| 793 | |
---|
| 794 | #endif //HUGO_PREFLOW_H |
---|
| 795 | |
---|
| 796 | |
---|
| 797 | |
---|
| 798 | |
---|