COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/hugo/skeletons/graph.h @ 543:2b031f790e7a

Last change on this file since 543:2b031f790e7a was 542:69bde1d90c04, checked in by Akos Ladanyi, 21 years ago

Set up automake environment.

File size: 12.1 KB
RevLine 
[174]1// -*- c++ -*-
[503]2#ifndef HUGO_SKELETON_GRAPH_H
3#define HUGO_SKELETON_GRAPH_H
[52]4
[242]5///\file
6///\brief Declaration of GraphSkeleton.
7
[542]8#include <hugo/invalid.h>
[145]9
[163]10/// The namespace of HugoLib
11namespace hugo {
12
[182]13  // @defgroup empty_graph The GraphSkeleton class
[163]14  // @{
15
16  /// An empty graph class.
17 
[186]18  /// This class provides all the common features of a graph structure,
19  /// however completely without implementations and real data structures
[163]20  /// behind the interface.
21  /// All graph algorithms should compile with this class, but it will not
22  /// run properly, of course.
23  ///
24  /// It can be used for checking the interface compatibility,
25  /// or it can serve as a skeleton of a new graph structure.
[165]26  ///
27  /// Also, you will find here the full documentation of a certain graph
28  /// feature, the documentation of a real graph imlementation
29  /// like @ref ListGraph or
30  /// @ref SmartGraph will just refer to this structure.
[182]31  class GraphSkeleton
[163]32  {
[147]33  public:
[320]34    /// Defalult constructor.
35    GraphSkeleton() {}
36    ///Copy consructor.
[321]37
38    ///\todo It is not clear, what we expect from a copy constructor.
39    ///E.g. How to assign the nodes/edges to each other? What about maps?
[320]40    GraphSkeleton(const GraphSkeleton &G) {}
41
[163]42    /// The base type of the node iterators.
[182]43
[186]44    /// This is the base type of each node iterators,
[182]45    /// thus each kind of node iterator will convert to this.
[163]46    class Node {
47    public:
48      /// @warning The default constructor sets the iterator
49      /// to an undefined value.
50      Node() {}   //FIXME
[182]51      /// Invalid constructor \& conversion.
52
53      /// This constructor initializes the iterator to be invalid.
54      /// \sa Invalid for more details.
55
[174]56      Node(Invalid) {}
[182]57      //Node(const Node &) {}
58
59      /// Two iterators are equal if and only if they point to the
60      /// same object or both are invalid.
[503]61      bool operator==(Node) const { return true; }
[182]62
63      /// \sa \ref operator==(Node n)
64      ///
[503]65      bool operator!=(Node) const { return true; }
[182]66
[503]67      bool operator<(Node) const { return true; }
[163]68    };
[147]69   
[163]70    /// This iterator goes through each node.
[186]71
72    /// This iterator goes through each node.
73    /// Its usage is quite simple, for example you can count the number
74    /// of nodes in graph \c G of type \c Graph like this:
75    /// \code
76    ///int count=0;
77    ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
78    /// \endcode
[163]79    class NodeIt : public Node {
80    public:
81      /// @warning The default constructor sets the iterator
82      /// to an undefined value.
83      NodeIt() {} //FIXME
[182]84      /// Invalid constructor \& conversion.
85
[163]86      /// Initialize the iterator to be invalid
[182]87      /// \sa Invalid for more details.
[174]88      NodeIt(Invalid) {}
[163]89      /// Sets the iterator to the first node of \c G.
[515]90      NodeIt(const GraphSkeleton &) {}
[182]91      /// @warning The default constructor sets the iterator
92      /// to an undefined value.
[503]93      NodeIt(const NodeIt &n) : Node(n) {}
[163]94    };
95   
96   
97    /// The base type of the edge iterators.
98    class Edge {
99    public:
100      /// @warning The default constructor sets the iterator
101      /// to an undefined value.
102      Edge() {}   //FIXME
103      /// Initialize the iterator to be invalid
[174]104      Edge(Invalid) {}
[182]105      /// Two iterators are equal if and only if they point to the
106      /// same object or both are invalid.
[503]107      bool operator==(Edge) const { return true; }
108      bool operator!=(Edge) const { return true; }
109      bool operator<(Edge) const { return true; }
[163]110    };
111   
[242]112    /// This iterator goes trough the outgoing edges of a node.
[186]113
[242]114    /// This iterator goes trough the \e outgoing edges of a certain node
[186]115    /// of a graph.
116    /// Its usage is quite simple, for example you can count the number
117    /// of outgoing edges of a node \c n
118    /// in graph \c G of type \c Graph as follows.
119    /// \code
120    ///int count=0;
121    ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
122    /// \endcode
[163]123   
124    class OutEdgeIt : public Edge {
125    public:
126      /// @warning The default constructor sets the iterator
127      /// to an undefined value.
128      OutEdgeIt() {}
129      /// Initialize the iterator to be invalid
[174]130      OutEdgeIt(Invalid) {}
[163]131      /// This constructor sets the iterator to first outgoing edge.
132   
133      /// This constructor set the iterator to the first outgoing edge of
134      /// node
135      ///@param n the node
136      ///@param G the graph
[515]137      OutEdgeIt(const GraphSkeleton &, Node) {}
[163]138    };
139
[242]140    /// This iterator goes trough the incoming edges of a node.
[186]141
[242]142    /// This iterator goes trough the \e incoming edges of a certain node
[186]143    /// of a graph.
144    /// Its usage is quite simple, for example you can count the number
145    /// of outgoing edges of a node \c n
146    /// in graph \c G of type \c Graph as follows.
147    /// \code
148    ///int count=0;
149    ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
150    /// \endcode
151
[163]152    class InEdgeIt : public Edge {
153    public:
154      /// @warning The default constructor sets the iterator
155      /// to an undefined value.
156      InEdgeIt() {}
157      /// Initialize the iterator to be invalid
[174]158      InEdgeIt(Invalid) {}
[182]159      InEdgeIt(const GraphSkeleton &, Node) {}   
[163]160    };
161    //  class SymEdgeIt : public Edge {};
[186]162
163    /// This iterator goes through each edge.
164
165    /// This iterator goes through each edge of a graph.
166    /// Its usage is quite simple, for example you can count the number
167    /// of edges in a graph \c G of type \c Graph as follows:
168    /// \code
169    ///int count=0;
170    ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
171    /// \endcode
[163]172    class EdgeIt : public Edge {
173    public:
174      /// @warning The default constructor sets the iterator
175      /// to an undefined value.
176      EdgeIt() {}
177      /// Initialize the iterator to be invalid
[174]178      EdgeIt(Invalid) {}
[182]179      EdgeIt(const GraphSkeleton &) {}
[163]180    };
181
182    /// First node of the graph.
183
[463]184    /// \retval i the first node.
185    /// \return the first node.
[163]186    ///
187    NodeIt &first(NodeIt &i) const { return i;}
188
[242]189    /// The first incoming edge.
[503]190    InEdgeIt &first(InEdgeIt &i, Node) const { return i;}
[163]191    /// The first outgoing edge.
[503]192    OutEdgeIt &first(OutEdgeIt &i, Node) const { return i;}
[163]193    //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
194    /// The first edge of the Graph.
195    EdgeIt &first(EdgeIt &i) const { return i;}
196
197//     Node getNext(Node) const {}
198//     InEdgeIt getNext(InEdgeIt) const {}
199//     OutEdgeIt getNext(OutEdgeIt) const {}
200//     //SymEdgeIt getNext(SymEdgeIt) const {}
201//     EdgeIt getNext(EdgeIt) const {}
202
203    /// Go to the next node.
[178]204    NodeIt &next(NodeIt &i) const { return i;}
[163]205    /// Go to the next incoming edge.
206    InEdgeIt &next(InEdgeIt &i) const { return i;}
207    /// Go to the next outgoing edge.
208    OutEdgeIt &next(OutEdgeIt &i) const { return i;}
209    //SymEdgeIt &next(SymEdgeIt &) const {}
210    /// Go to the next edge.
211    EdgeIt &next(EdgeIt &i) const { return i;}
212
213    ///Gives back the head node of an edge.
214    Node head(Edge) const { return INVALID; }
215    ///Gives back the tail node of an edge.
216    Node tail(Edge) const { return INVALID; }
[52]217 
[163]218    //   Node aNode(InEdgeIt) const {}
219    //   Node aNode(OutEdgeIt) const {}
220    //   Node aNode(SymEdgeIt) const {}
221
222    //   Node bNode(InEdgeIt) const {}
223    //   Node bNode(OutEdgeIt) const {}
224    //   Node bNode(SymEdgeIt) const {}
225
226    /// Checks if a node iterator is valid
[186]227
228    ///\todo Maybe, it would be better if iterator converted to
229    ///bool directly, as Jacint prefers.
[320]230    bool valid(const Node&) const { return true;}
[163]231    /// Checks if an edge iterator is valid
[186]232
233    ///\todo Maybe, it would be better if iterator converted to
234    ///bool directly, as Jacint prefers.
[320]235    bool valid(const Edge&) const { return true;}
[163]236
237    ///Gives back the \e id of a node.
[182]238
[242]239    ///\warning Not all graph structures provide this feature.
[182]240    ///
[320]241    int id(const Node&) const { return 0;}
[163]242    ///Gives back the \e id of an edge.
[182]243
[242]244    ///\warning Not all graph structures provide this feature.
[182]245    ///
[320]246    int id(const Edge&) const { return 0;}
[163]247
248    //void setInvalid(Node &) const {};
249    //void setInvalid(Edge &) const {};
250 
[182]251    ///Add a new node to the graph.
252
253    /// \return the new node.
[186]254    ///
[163]255    Node addNode() { return INVALID;}
[182]256    ///Add a new edge to the graph.
257
258    ///Add a new edge to the graph with tail node \c tail
259    ///and head node \c head.
260    ///\return the new edge.
[503]261    Edge addEdge(Node, Node) { return INVALID;}
[163]262   
[242]263    /// Resets the graph.
[182]264
265    /// This function deletes all edges and nodes of the graph.
266    /// It also frees the memory allocated to store them.
[163]267    void clear() {}
268
[179]269    int nodeNum() const { return 0;}
270    int edgeNum() const { return 0;}
[163]271
[186]272    ///Read/write/reference map of the nodes to type \c T.
[182]273
[186]274    ///Read/write/reference map of the nodes to type \c T.
275    /// \sa MemoryMapSkeleton
[182]276    /// \todo We may need copy constructor
277    /// \todo We may need conversion from other nodetype
278    /// \todo We may need operator=
[216]279    /// \warning Making maps that can handle bool type (NodeMap<bool>)
280    /// needs extra attention!
[182]281
[163]282    template<class T> class NodeMap
283    {
284    public:
285      typedef T ValueType;
286      typedef Node KeyType;
287
[515]288      NodeMap(const GraphSkeleton &) {}
289      NodeMap(const GraphSkeleton &, T) {}
[163]290
[515]291      template<typename TT> NodeMap(const NodeMap<TT> &) {}
[182]292
293      /// Sets the value of a node.
294
295      /// Sets the value associated with node \c i to the value \c t.
296      ///
[503]297      void set(Node, T) {}
298      // Gets the value of a node.
299      //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
300      T &operator[](Node) {return *(T*)0;}
301      const T &operator[](Node) const {return *(T*)0;}
[163]302
[182]303      /// Updates the map if the graph has been changed
304
305      /// \todo Do we need this?
306      ///
[163]307      void update() {}
308      void update(T a) {}   //FIXME: Is it necessary
309    };
310
[186]311    ///Read/write/reference map of the edges to type \c T.
[182]312
[186]313    ///Read/write/reference map of the edges to type \c T.
314    ///It behaves exactly in the same way as \ref NodeMap.
315    /// \sa NodeMap
316    /// \sa MemoryMapSkeleton
317    /// \todo We may need copy constructor
318    /// \todo We may need conversion from other edgetype
319    /// \todo We may need operator=
[163]320    template<class T> class EdgeMap
321    {
322    public:
323      typedef T ValueType;
324      typedef Edge KeyType;
325
[515]326      EdgeMap(const GraphSkeleton &) {}
327      EdgeMap(const GraphSkeleton &, T ) {}
[163]328   
[503]329      ///\todo It can copy between different types.
330      ///
[515]331      template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
[503]332
333      void set(Edge, T) {}
334      //T get(Edge) const {return *(T*)0;}
335      T &operator[](Edge) {return *(T*)0;}
336      const T &operator[](Edge) const {return *(T*)0;}
[163]337   
338      void update() {}
339      void update(T a) {}   //FIXME: Is it necessary
340    };
[147]341  };
[52]342
[242]343  /// An empty eraseable graph class.
344 
345  /// This class provides all the common features of an \e eraseable graph
346  /// structure,
347  /// however completely without implementations and real data structures
348  /// behind the interface.
349  /// All graph algorithms should compile with this class, but it will not
350  /// run properly, of course.
351  ///
352  /// \todo This blabla could be replaced by a sepatate description about
353  /// Skeletons.
354  ///
355  /// It can be used for checking the interface compatibility,
356  /// or it can serve as a skeleton of a new graph structure.
357  ///
358  /// Also, you will find here the full documentation of a certain graph
359  /// feature, the documentation of a real graph imlementation
360  /// like @ref ListGraph or
361  /// @ref SmartGraph will just refer to this structure.
362  class EraseableGraphSkeleton : public GraphSkeleton
363  {
364  public:
365    /// Deletes a node.
366    void erase(Node n) {}
367    /// Deletes an edge.
368    void erase(Edge e) {}
369
370    /// Defalult constructor.
[403]371    EraseableGraphSkeleton() {}
[242]372    ///Copy consructor.
[403]373    EraseableGraphSkeleton(const GraphSkeleton &G) {}
[242]374  };
375
376 
[163]377  // @}
[147]378
[174]379} //namespace hugo
[52]380
[145]381
382
[182]383// class EmptyBipGraph : public Graph Skeleton
[147]384// {
[163]385//   class ANode {};
386//   class BNode {};
[145]387
[163]388//   ANode &next(ANode &) {}
389//   BNode &next(BNode &) {}
[145]390
[163]391//   ANode &getFirst(ANode &) const {}
392//   BNode &getFirst(BNode &) const {}
[145]393
[147]394//   enum NodeClass { A = 0, B = 1 };
[163]395//   NodeClass getClass(Node n) {}
[147]396
397// }
[174]398
[503]399#endif // HUGO_SKELETON_GRAPH_H
Note: See TracBrowser for help on using the repository browser.