[906] | 1 | /* -*- C++ -*- |
---|
| 2 | * src/hugo/suurballe.h - Part of HUGOlib, a generic C++ optimization library |
---|
| 3 | * |
---|
| 4 | * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 5 | * (Egervary Combinatorial Optimization Research Group, EGRES). |
---|
| 6 | * |
---|
| 7 | * Permission to use, modify and distribute this software is granted |
---|
| 8 | * provided that this copyright notice appears in all copies. For |
---|
| 9 | * precise terms see the accompanying LICENSE file. |
---|
| 10 | * |
---|
| 11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 12 | * express or implied, and with no claim as to its suitability for any |
---|
| 13 | * purpose. |
---|
| 14 | * |
---|
| 15 | */ |
---|
| 16 | |
---|
[901] | 17 | #ifndef HUGO_SUURBALLE_H |
---|
| 18 | #define HUGO_SUURBALLE_H |
---|
[899] | 19 | |
---|
| 20 | ///\ingroup flowalgs |
---|
| 21 | ///\file |
---|
| 22 | ///\brief An algorithm for finding k paths of minimal total length. |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | #include <hugo/maps.h> |
---|
| 26 | #include <vector> |
---|
| 27 | #include <hugo/min_cost_flow.h> |
---|
| 28 | |
---|
| 29 | namespace hugo { |
---|
| 30 | |
---|
| 31 | /// \addtogroup flowalgs |
---|
| 32 | /// @{ |
---|
| 33 | |
---|
| 34 | ///\brief Implementation of an algorithm for finding k edge-disjoint paths between 2 nodes |
---|
| 35 | /// of minimal total length |
---|
| 36 | /// |
---|
| 37 | /// The class \ref hugo::Suurballe implements |
---|
| 38 | /// an algorithm for finding k edge-disjoint paths |
---|
| 39 | /// from a given source node to a given target node in an |
---|
| 40 | /// edge-weighted directed graph having minimal total weight (length). |
---|
| 41 | /// |
---|
| 42 | ///\warning Length values should be nonnegative. |
---|
| 43 | /// |
---|
| 44 | ///\param Graph The directed graph type the algorithm runs on. |
---|
| 45 | ///\param LengthMap The type of the length map (values should be nonnegative). |
---|
| 46 | /// |
---|
| 47 | ///\note It it questionable if it is correct to call this method after |
---|
| 48 | ///%Suurballe for it is just a special case of Edmond's and Karp's algorithm |
---|
| 49 | ///for finding minimum cost flows. In fact, this implementation is just |
---|
| 50 | ///wraps the MinCostFlow algorithms. The paper of both %Suurballe and |
---|
| 51 | ///Edmonds-Karp published in 1972, therefore it is possibly right to |
---|
| 52 | ///state that they are |
---|
| 53 | ///independent results. Most frequently this special case is referred as |
---|
| 54 | ///%Suurballe method in the literature, especially in communication |
---|
| 55 | ///network context. |
---|
| 56 | ///\author Attila Bernath |
---|
| 57 | template <typename Graph, typename LengthMap> |
---|
| 58 | class Suurballe{ |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | typedef typename LengthMap::ValueType Length; |
---|
| 62 | |
---|
| 63 | typedef typename Graph::Node Node; |
---|
| 64 | typedef typename Graph::NodeIt NodeIt; |
---|
| 65 | typedef typename Graph::Edge Edge; |
---|
| 66 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 67 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
| 68 | |
---|
| 69 | typedef ConstMap<Edge,int> ConstMap; |
---|
| 70 | |
---|
| 71 | //Input |
---|
| 72 | const Graph& G; |
---|
| 73 | |
---|
| 74 | //Auxiliary variables |
---|
| 75 | //This is the capacity map for the mincostflow problem |
---|
| 76 | ConstMap const1map; |
---|
| 77 | //This MinCostFlow instance will actually solve the problem |
---|
| 78 | MinCostFlow<Graph, LengthMap, ConstMap> mincost_flow; |
---|
| 79 | |
---|
| 80 | //Container to store found paths |
---|
| 81 | std::vector< std::vector<Edge> > paths; |
---|
| 82 | |
---|
| 83 | public : |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | /// The constructor of the class. |
---|
| 87 | |
---|
| 88 | ///\param _G The directed graph the algorithm runs on. |
---|
| 89 | ///\param _length The length (weight or cost) of the edges. |
---|
| 90 | Suurballe(Graph& _G, LengthMap& _length) : G(_G), |
---|
| 91 | const1map(1), mincost_flow(_G, _length, const1map){} |
---|
| 92 | |
---|
| 93 | ///Runs the algorithm. |
---|
| 94 | |
---|
| 95 | ///Runs the algorithm. |
---|
| 96 | ///Returns k if there are at least k edge-disjoint paths from s to t. |
---|
| 97 | ///Otherwise it returns the number of found edge-disjoint paths from s to t. |
---|
| 98 | /// |
---|
| 99 | ///\param s The source node. |
---|
| 100 | ///\param t The target node. |
---|
| 101 | ///\param k How many paths are we looking for? |
---|
| 102 | /// |
---|
| 103 | int run(Node s, Node t, int k) { |
---|
| 104 | |
---|
| 105 | int i = mincost_flow.run(s,t,k); |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | //Let's find the paths |
---|
| 109 | //We put the paths into stl vectors (as an inner representation). |
---|
| 110 | //In the meantime we lose the information stored in 'reversed'. |
---|
| 111 | //We suppose the lengths to be positive now. |
---|
| 112 | |
---|
| 113 | //We don't want to change the flow of mincost_flow, so we make a copy |
---|
| 114 | //The name here suggests that the flow has only 0/1 values. |
---|
| 115 | EdgeIntMap reversed(G); |
---|
| 116 | |
---|
| 117 | for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) |
---|
| 118 | reversed[e] = mincost_flow.getFlow()[e]; |
---|
| 119 | |
---|
| 120 | paths.clear(); |
---|
| 121 | //total_length=0; |
---|
| 122 | paths.resize(k); |
---|
| 123 | for (int j=0; j<i; ++j){ |
---|
| 124 | Node n=s; |
---|
| 125 | OutEdgeIt e; |
---|
| 126 | |
---|
| 127 | while (n!=t){ |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | G.first(e,n); |
---|
| 131 | |
---|
| 132 | while (!reversed[e]){ |
---|
| 133 | ++e; |
---|
| 134 | } |
---|
| 135 | n = G.head(e); |
---|
| 136 | paths[j].push_back(e); |
---|
| 137 | //total_length += length[e]; |
---|
| 138 | reversed[e] = 1-reversed[e]; |
---|
| 139 | } |
---|
| 140 | |
---|
| 141 | } |
---|
| 142 | return i; |
---|
| 143 | } |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | ///Returns the total length of the paths |
---|
| 147 | |
---|
| 148 | ///This function gives back the total length of the found paths. |
---|
| 149 | ///\pre \ref run() must |
---|
| 150 | ///be called before using this function. |
---|
| 151 | Length totalLength(){ |
---|
| 152 | return mincost_flow.totalLength(); |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | ///Returns the found flow. |
---|
| 156 | |
---|
| 157 | ///This function returns a const reference to the EdgeMap \c flow. |
---|
| 158 | ///\pre \ref run() must |
---|
| 159 | ///be called before using this function. |
---|
| 160 | const EdgeIntMap &getFlow() const { return mincost_flow.flow;} |
---|
| 161 | |
---|
| 162 | /// Returns the optimal dual solution |
---|
| 163 | |
---|
| 164 | ///This function returns a const reference to the NodeMap |
---|
| 165 | ///\c potential (the dual solution). |
---|
| 166 | /// \pre \ref run() must be called before using this function. |
---|
| 167 | const EdgeIntMap &getPotential() const { return mincost_flow.potential;} |
---|
| 168 | |
---|
| 169 | ///Checks whether the complementary slackness holds. |
---|
| 170 | |
---|
| 171 | ///This function checks, whether the given solution is optimal. |
---|
| 172 | ///It should return true after calling \ref run() |
---|
| 173 | ///Currently this function only checks optimality, |
---|
| 174 | ///doesn't bother with feasibility |
---|
| 175 | ///It is meant for testing purposes. |
---|
| 176 | /// |
---|
| 177 | bool checkComplementarySlackness(){ |
---|
| 178 | return mincost_flow.checkComplementarySlackness(); |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | ///Read the found paths. |
---|
| 182 | |
---|
| 183 | ///This function gives back the \c j-th path in argument p. |
---|
| 184 | ///Assumes that \c run() has been run and nothing changed since then. |
---|
| 185 | /// \warning It is assumed that \c p is constructed to |
---|
| 186 | ///be a path of graph \c G. |
---|
| 187 | ///If \c j is not less than the result of previous \c run, |
---|
| 188 | ///then the result here will be an empty path (\c j can be 0 as well). |
---|
| 189 | /// |
---|
| 190 | ///\param Path The type of the path structure to put the result to (must meet hugo path concept). |
---|
| 191 | ///\param p The path to put the result to |
---|
| 192 | ///\param j Which path you want to get from the found paths (in a real application you would get the found paths iteratively) |
---|
| 193 | template<typename Path> |
---|
| 194 | void getPath(Path& p, size_t j){ |
---|
| 195 | |
---|
| 196 | p.clear(); |
---|
| 197 | if (j>paths.size()-1){ |
---|
| 198 | return; |
---|
| 199 | } |
---|
| 200 | typename Path::Builder B(p); |
---|
| 201 | for(typename std::vector<Edge>::iterator i=paths[j].begin(); |
---|
| 202 | i!=paths[j].end(); ++i ){ |
---|
| 203 | B.pushBack(*i); |
---|
| 204 | } |
---|
| 205 | |
---|
| 206 | B.commit(); |
---|
| 207 | } |
---|
| 208 | |
---|
| 209 | }; //class Suurballe |
---|
| 210 | |
---|
| 211 | ///@} |
---|
| 212 | |
---|
| 213 | } //namespace hugo |
---|
| 214 | |
---|
[901] | 215 | #endif //HUGO_SUURBALLE_H |
---|