[255] | 1 | // -*- C++ -*- |
---|
| 2 | #ifndef HUGO_DIJKSTRA_H |
---|
| 3 | #define HUGO_DIJKSTRA_H |
---|
| 4 | |
---|
| 5 | ///\file |
---|
| 6 | ///\brief Dijkstra algorithm. |
---|
| 7 | |
---|
[258] | 8 | #include <bin_heap.h> |
---|
[257] | 9 | #include <invalid.h> |
---|
[255] | 10 | |
---|
| 11 | namespace hugo { |
---|
[385] | 12 | |
---|
[255] | 13 | ///%Dijkstra algorithm class. |
---|
| 14 | |
---|
| 15 | ///This class provides an efficient implementation of %Dijkstra algorithm. |
---|
| 16 | ///The edge lengths are passed to the algorithm using a |
---|
| 17 | ///\ref ReadMapSkeleton "readable map", |
---|
| 18 | ///so it is easy to change it to any kind of length. |
---|
| 19 | /// |
---|
| 20 | ///The type of the length is determined by the \c ValueType of the length map. |
---|
| 21 | /// |
---|
| 22 | ///It is also possible to change the underlying priority heap. |
---|
| 23 | /// |
---|
[385] | 24 | ///\param Graph The graph type the algorithm runs on. |
---|
| 25 | ///\param LengthMap This read-only |
---|
| 26 | ///EdgeMap |
---|
| 27 | ///determines the |
---|
| 28 | ///lengths of the edges. It is read once for each edge, so the map |
---|
| 29 | ///may involve in relatively time consuming process to compute the edge |
---|
| 30 | ///length if it is necessary. The default map type is |
---|
| 31 | ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>" |
---|
| 32 | ///\param Heap The heap type used by the %Dijkstra |
---|
| 33 | ///algorithm. The default |
---|
| 34 | ///is using \ref BinHeap "binary heap". |
---|
[255] | 35 | |
---|
| 36 | #ifdef DOXYGEN |
---|
| 37 | template <typename Graph, |
---|
| 38 | typename LengthMap, |
---|
| 39 | typename Heap> |
---|
| 40 | #else |
---|
| 41 | template <typename Graph, |
---|
| 42 | typename LengthMap=typename Graph::EdgeMap<int>, |
---|
| 43 | template <class,class,class> class Heap = BinHeap > |
---|
| 44 | #endif |
---|
| 45 | class Dijkstra{ |
---|
| 46 | public: |
---|
| 47 | typedef typename Graph::Node Node; |
---|
| 48 | typedef typename Graph::NodeIt NodeIt; |
---|
| 49 | typedef typename Graph::Edge Edge; |
---|
| 50 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 51 | |
---|
| 52 | typedef typename LengthMap::ValueType ValueType; |
---|
| 53 | typedef typename Graph::NodeMap<Edge> PredMap; |
---|
| 54 | typedef typename Graph::NodeMap<Node> PredNodeMap; |
---|
| 55 | typedef typename Graph::NodeMap<ValueType> DistMap; |
---|
| 56 | |
---|
| 57 | private: |
---|
| 58 | const Graph& G; |
---|
| 59 | const LengthMap& length; |
---|
| 60 | PredMap predecessor; |
---|
| 61 | PredNodeMap pred_node; |
---|
| 62 | DistMap distance; |
---|
| 63 | |
---|
| 64 | public : |
---|
| 65 | |
---|
| 66 | Dijkstra(Graph& _G, LengthMap& _length) : |
---|
| 67 | G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { } |
---|
| 68 | |
---|
| 69 | void run(Node s); |
---|
| 70 | |
---|
[385] | 71 | ///The distance of a node from the root. |
---|
[255] | 72 | |
---|
[385] | 73 | ///Returns the distance of a node from the root. |
---|
[255] | 74 | ///\pre \ref run() must be called before using this function. |
---|
[385] | 75 | ///\warning If node \c v in unreachable from the root the return value |
---|
[255] | 76 | ///of this funcion is undefined. |
---|
| 77 | ValueType dist(Node v) const { return distance[v]; } |
---|
[373] | 78 | |
---|
[385] | 79 | ///Returns the previous edge of the shortest path tree. |
---|
[255] | 80 | |
---|
[385] | 81 | ///For a node \c v it returns the previous edge of the shortest path tree, |
---|
| 82 | ///i.e. it returns the last edge from a shortest path from the root to \c |
---|
| 83 | ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The |
---|
| 84 | ///shortest path tree used here is equal to the shortest path tree used in |
---|
| 85 | ///\ref predNode(Node v). \pre \ref run() must be called before using |
---|
| 86 | ///this function. |
---|
[255] | 87 | Edge pred(Node v) const { return predecessor[v]; } |
---|
[373] | 88 | |
---|
[385] | 89 | ///Returns the previous node of the shortest path tree. |
---|
[255] | 90 | |
---|
[385] | 91 | ///For a node \c v it returns the previous node of the shortest path tree, |
---|
| 92 | ///i.e. it returns the last but one node from a shortest path from the |
---|
| 93 | ///root to \c /v. It is INVALID if \c v is unreachable from the root or if |
---|
| 94 | ///\c v=s. The shortest path tree used here is equal to the shortest path |
---|
| 95 | ///tree used in \ref pred(Node v). \pre \ref run() must be called before |
---|
| 96 | ///using this function. |
---|
[255] | 97 | Node predNode(Node v) const { return pred_node[v]; } |
---|
| 98 | |
---|
| 99 | ///Returns a reference to the NodeMap of distances. |
---|
| 100 | |
---|
[385] | 101 | ///Returns a reference to the NodeMap of distances. \pre \ref run() must |
---|
| 102 | ///be called before using this function. |
---|
[255] | 103 | const DistMap &distMap() const { return distance;} |
---|
[385] | 104 | |
---|
[255] | 105 | ///Returns a reference to the shortest path tree map. |
---|
| 106 | |
---|
| 107 | ///Returns a reference to the NodeMap of the edges of the |
---|
| 108 | ///shortest path tree. |
---|
| 109 | ///\pre \ref run() must be called before using this function. |
---|
| 110 | const PredMap &predMap() const { return predecessor;} |
---|
[385] | 111 | |
---|
| 112 | ///Returns a reference to the map of nodes of shortest paths. |
---|
[255] | 113 | |
---|
| 114 | ///Returns a reference to the NodeMap of the last but one nodes of the |
---|
[385] | 115 | ///shortest path tree. |
---|
[255] | 116 | ///\pre \ref run() must be called before using this function. |
---|
| 117 | const PredNodeMap &predNodeMap() const { return pred_node;} |
---|
| 118 | |
---|
[385] | 119 | ///Checks if a node is reachable from the root. |
---|
[255] | 120 | |
---|
[385] | 121 | ///Returns \c true if \c v is reachable from the root. |
---|
| 122 | ///\warning the root node is reported to be unreached! |
---|
[255] | 123 | ///\todo Is this what we want? |
---|
| 124 | ///\pre \ref run() must be called before using this function. |
---|
[385] | 125 | /// |
---|
[255] | 126 | bool reached(Node v) { return G.valid(predecessor[v]); } |
---|
| 127 | |
---|
| 128 | }; |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | // ********************************************************************** |
---|
| 132 | // IMPLEMENTATIONS |
---|
| 133 | // ********************************************************************** |
---|
| 134 | |
---|
[385] | 135 | ///Runs %Dijkstra algorithm from node the root. |
---|
[255] | 136 | |
---|
[385] | 137 | ///This method runs the %Dijkstra algorithm from a root node \c s |
---|
| 138 | ///in order to |
---|
| 139 | ///compute the |
---|
| 140 | ///shortest path to each node. The algorithm computes |
---|
| 141 | ///- The shortest path tree. |
---|
| 142 | ///- The distance of each node from the root. |
---|
[255] | 143 | template <typename Graph, typename LengthMap, |
---|
| 144 | template<class,class,class> class Heap > |
---|
| 145 | void Dijkstra<Graph,LengthMap,Heap>::run(Node s) { |
---|
| 146 | |
---|
| 147 | NodeIt u; |
---|
| 148 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) { |
---|
| 149 | predecessor.set(u,INVALID); |
---|
| 150 | pred_node.set(u,INVALID); |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | typename Graph::NodeMap<int> heap_map(G,-1); |
---|
| 154 | |
---|
| 155 | Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map); |
---|
[385] | 156 | |
---|
[255] | 157 | heap.push(s,0); |
---|
| 158 | |
---|
[385] | 159 | while ( !heap.empty() ) { |
---|
[255] | 160 | |
---|
[385] | 161 | Node v=heap.top(); |
---|
| 162 | ValueType oldvalue=heap[v]; |
---|
| 163 | heap.pop(); |
---|
| 164 | distance.set(v, oldvalue); |
---|
| 165 | |
---|
| 166 | { //FIXME this bracket is for e to be local |
---|
| 167 | OutEdgeIt e; |
---|
| 168 | for(G.first(e, v); |
---|
| 169 | G.valid(e); G.next(e)) { |
---|
[421] | 170 | Node w=G.bNode(e); |
---|
[255] | 171 | |
---|
| 172 | switch(heap.state(w)) { |
---|
| 173 | case heap.PRE_HEAP: |
---|
| 174 | heap.push(w,oldvalue+length[e]); |
---|
| 175 | predecessor.set(w,e); |
---|
| 176 | pred_node.set(w,v); |
---|
| 177 | break; |
---|
| 178 | case heap.IN_HEAP: |
---|
| 179 | if ( oldvalue+length[e] < heap[w] ) { |
---|
| 180 | heap.decrease(w, oldvalue+length[e]); |
---|
| 181 | predecessor.set(w,e); |
---|
| 182 | pred_node.set(w,v); |
---|
| 183 | } |
---|
| 184 | break; |
---|
| 185 | case heap.POST_HEAP: |
---|
| 186 | break; |
---|
| 187 | } |
---|
| 188 | } |
---|
[385] | 189 | } //FIXME tis bracket |
---|
| 190 | } |
---|
[255] | 191 | } |
---|
| 192 | |
---|
| 193 | } //END OF NAMESPACE HUGO |
---|
| 194 | |
---|
| 195 | #endif |
---|
| 196 | |
---|
| 197 | |
---|