// -*- C++ -*- #ifndef HUGO_DIJKSTRA_H #define HUGO_DIJKSTRA_H ///\file ///\brief Dijkstra algorithm. #include #include namespace hugo { ///%Dijkstra algorithm class. ///This class provides an efficient implementation of %Dijkstra algorithm. ///The edge lengths are passed to the algorithm using a ///\ref ReadMapSkeleton "readable map", ///so it is easy to change it to any kind of length. /// ///The type of the length is determined by the \c ValueType of the length map. /// ///It is also possible to change the underlying priority heap. /// ///\param Graph The graph type the algorithm runs on. ///\param LengthMap This read-only ///EdgeMap ///determines the ///lengths of the edges. It is read once for each edge, so the map ///may involve in relatively time consuming process to compute the edge ///length if it is necessary. The default map type is ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap" ///\param Heap The heap type used by the %Dijkstra ///algorithm. The default ///is using \ref BinHeap "binary heap". #ifdef DOXYGEN template #else template , template class Heap = BinHeap > #endif class Dijkstra{ public: typedef typename Graph::Node Node; typedef typename Graph::NodeIt NodeIt; typedef typename Graph::Edge Edge; typedef typename Graph::OutEdgeIt OutEdgeIt; typedef typename LengthMap::ValueType ValueType; typedef typename Graph::NodeMap PredMap; typedef typename Graph::NodeMap PredNodeMap; typedef typename Graph::NodeMap DistMap; private: const Graph& G; const LengthMap& length; PredMap predecessor; PredNodeMap pred_node; DistMap distance; public : Dijkstra(Graph& _G, LengthMap& _length) : G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { } void run(Node s); ///The distance of a node from the root. ///Returns the distance of a node from the root. ///\pre \ref run() must be called before using this function. ///\warning If node \c v in unreachable from the root the return value ///of this funcion is undefined. ValueType dist(Node v) const { return distance[v]; } ///Returns the previous edge of the shortest path tree. ///For a node \c v it returns the previous edge of the shortest path tree, ///i.e. it returns the last edge from a shortest path from the root to \c ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The ///shortest path tree used here is equal to the shortest path tree used in ///\ref predNode(Node v). \pre \ref run() must be called before using ///this function. Edge pred(Node v) const { return predecessor[v]; } ///Returns the previous node of the shortest path tree. ///For a node \c v it returns the previous node of the shortest path tree, ///i.e. it returns the last but one node from a shortest path from the ///root to \c /v. It is INVALID if \c v is unreachable from the root or if ///\c v=s. The shortest path tree used here is equal to the shortest path ///tree used in \ref pred(Node v). \pre \ref run() must be called before ///using this function. Node predNode(Node v) const { return pred_node[v]; } ///Returns a reference to the NodeMap of distances. ///Returns a reference to the NodeMap of distances. \pre \ref run() must ///be called before using this function. const DistMap &distMap() const { return distance;} ///Returns a reference to the shortest path tree map. ///Returns a reference to the NodeMap of the edges of the ///shortest path tree. ///\pre \ref run() must be called before using this function. const PredMap &predMap() const { return predecessor;} ///Returns a reference to the map of nodes of shortest paths. ///Returns a reference to the NodeMap of the last but one nodes of the ///shortest path tree. ///\pre \ref run() must be called before using this function. const PredNodeMap &predNodeMap() const { return pred_node;} ///Checks if a node is reachable from the root. ///Returns \c true if \c v is reachable from the root. ///\warning the root node is reported to be unreached! ///\todo Is this what we want? ///\pre \ref run() must be called before using this function. /// bool reached(Node v) { return G.valid(predecessor[v]); } }; // ********************************************************************** // IMPLEMENTATIONS // ********************************************************************** ///Runs %Dijkstra algorithm from node the root. ///This method runs the %Dijkstra algorithm from a root node \c s ///in order to ///compute the ///shortest path to each node. The algorithm computes ///- The shortest path tree. ///- The distance of each node from the root. template class Heap > void Dijkstra::run(Node s) { NodeIt u; for ( G.first(u) ; G.valid(u) ; G.next(u) ) { predecessor.set(u,INVALID); pred_node.set(u,INVALID); } typename Graph::NodeMap heap_map(G,-1); Heap > heap(heap_map); heap.push(s,0); while ( !heap.empty() ) { Node v=heap.top(); ValueType oldvalue=heap[v]; heap.pop(); distance.set(v, oldvalue); { //FIXME this bracket is for e to be local OutEdgeIt e; for(G.first(e, v); G.valid(e); G.next(e)) { Node w=G.bNode(e); switch(heap.state(w)) { case heap.PRE_HEAP: heap.push(w,oldvalue+length[e]); predecessor.set(w,e); pred_node.set(w,v); break; case heap.IN_HEAP: if ( oldvalue+length[e] < heap[w] ) { heap.decrease(w, oldvalue+length[e]); predecessor.set(w,e); pred_node.set(w,v); } break; case heap.POST_HEAP: break; } } } //FIXME tis bracket } } } //END OF NAMESPACE HUGO #endif