1 | // -*- C++ -*- |
---|
2 | |
---|
3 | #ifndef HUGO_FIB_HEAP_H |
---|
4 | #define HUGO_FIB_HEAP_H |
---|
5 | |
---|
6 | ///\file |
---|
7 | ///\brief Fibonacci Heap implementation. |
---|
8 | |
---|
9 | #include <vector> |
---|
10 | #include <functional> |
---|
11 | #include <math.h> |
---|
12 | |
---|
13 | namespace hugo { |
---|
14 | |
---|
15 | /// An implementation of the Fibonacci Heap. |
---|
16 | |
---|
17 | /** |
---|
18 | This class implements the \e Fibonacci \e heap data structure. A \e |
---|
19 | heap is a data structure for storing items with specified priorities, |
---|
20 | such that finding the item with minimum priority is efficient. In a |
---|
21 | heap one can change the priority of an item, and to add or erase an |
---|
22 | item. |
---|
23 | |
---|
24 | The methods \ref increase and \ref erase are not efficient, in |
---|
25 | case of many calls to these operations, it is better to use |
---|
26 | a binary heap. |
---|
27 | |
---|
28 | /param Item The type of the items to be stored. |
---|
29 | /param Prio The type of the priority of the items. |
---|
30 | /param ItemIntMap A read and writable Item int map, for the usage of |
---|
31 | the heap. |
---|
32 | /param Compare A class for the comparison of the priorities. The |
---|
33 | default is \c std::less<Prio>. |
---|
34 | |
---|
35 | */ |
---|
36 | |
---|
37 | #ifdef DOXYGEN |
---|
38 | template <typename Item, |
---|
39 | typename Prio, |
---|
40 | typename ItemIntMap, |
---|
41 | typename Compare> |
---|
42 | #else |
---|
43 | template <typename Item, |
---|
44 | typename Prio, |
---|
45 | typename ItemIntMap, |
---|
46 | typename Compare = std::less<Prio> > |
---|
47 | #endif |
---|
48 | class FibHeap { |
---|
49 | public: |
---|
50 | typedef Prio PrioType; |
---|
51 | |
---|
52 | private: |
---|
53 | class store; |
---|
54 | |
---|
55 | std::vector<store> container; |
---|
56 | int minimum; |
---|
57 | ItemIntMap &iimap; |
---|
58 | Compare comp; |
---|
59 | int num_items; |
---|
60 | |
---|
61 | ///\todo It is use nowhere |
---|
62 | ///\todo It doesn't conform to the naming conventions. |
---|
63 | public: |
---|
64 | enum state_enum { |
---|
65 | IN_HEAP = 0, |
---|
66 | PRE_HEAP = -1, |
---|
67 | POST_HEAP = -2 |
---|
68 | }; |
---|
69 | |
---|
70 | public : |
---|
71 | |
---|
72 | FibHeap(ItemIntMap &_iimap) : minimum(0), iimap(_iimap), num_items() {} |
---|
73 | FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), |
---|
74 | iimap(_iimap), comp(_comp), num_items() {} |
---|
75 | |
---|
76 | ///The number of items stored in the heap. |
---|
77 | |
---|
78 | /** |
---|
79 | Returns the number of items stored in the heap. |
---|
80 | */ |
---|
81 | int size() const { return num_items; } |
---|
82 | |
---|
83 | ///Checks if the heap stores no items. |
---|
84 | |
---|
85 | /** |
---|
86 | Returns true iff the heap stores no items. |
---|
87 | */ |
---|
88 | bool empty() const { return num_items==0; } |
---|
89 | |
---|
90 | ///Item \c item gets to the heap with priority \c value independently if \c item was already there. |
---|
91 | |
---|
92 | /** |
---|
93 | This method calls \ref push(item, value) if \c item is not |
---|
94 | stored in the heap, and it calls \ref decrease(it, \c value) or |
---|
95 | \ref increase(it, \c value) otherwise. |
---|
96 | */ |
---|
97 | void set (Item const item, PrioType const value); //vigyazat: az implementacioban it van |
---|
98 | |
---|
99 | ///Adds \c item to the heap with priority \c value. |
---|
100 | |
---|
101 | /** |
---|
102 | Adds \c item to the heap with priority \c value. |
---|
103 | \pre \c item must not be stored in the heap. |
---|
104 | */ |
---|
105 | void push (Item const it, PrioType const value); /*vigyazat: az implementacioban it van*/ |
---|
106 | |
---|
107 | |
---|
108 | ///Returns the item having the minimum priority w.r.t. Compare. |
---|
109 | |
---|
110 | /** |
---|
111 | This method returns the item having the minimum priority w.r.t. Compare. |
---|
112 | \pre The heap must be nonempty. |
---|
113 | */ |
---|
114 | Item top() const { return container[minimum].name; } |
---|
115 | |
---|
116 | |
---|
117 | ///Returns the minimum priority w.r.t. Compare. |
---|
118 | |
---|
119 | /** |
---|
120 | It returns the minimum priority w.r.t. Compare. |
---|
121 | \pre The heap must be nonempty. |
---|
122 | */ |
---|
123 | PrioType prio() const { return container[minimum].prio; } |
---|
124 | |
---|
125 | |
---|
126 | ///Returns the priority of \c item. |
---|
127 | |
---|
128 | /** |
---|
129 | It returns the priority of \c item. |
---|
130 | \pre \c item must be in the heap. |
---|
131 | */ |
---|
132 | PrioType& operator[](const Item& it) { return container[iimap[it]].prio; } |
---|
133 | |
---|
134 | ///Returns the priority of \c item. |
---|
135 | |
---|
136 | /** |
---|
137 | It returns the priority of \c item. |
---|
138 | \pre \c item must be in the heap. |
---|
139 | */ |
---|
140 | const PrioType& operator[](const Item& it) const { |
---|
141 | return container[iimap[it]].prio; |
---|
142 | } |
---|
143 | |
---|
144 | |
---|
145 | ///Deletes the item with minimum priority w.r.t. Compare. |
---|
146 | |
---|
147 | /** |
---|
148 | This method deletes the item with minimum priority w.r.t. |
---|
149 | Compare from the heap. |
---|
150 | \pre The heap must be non-empty. |
---|
151 | */ |
---|
152 | void pop(); |
---|
153 | |
---|
154 | ///Deletes \c item from the heap. |
---|
155 | |
---|
156 | /** |
---|
157 | This method deletes \c item from the heap, if \c item was already |
---|
158 | stored in the heap. It is quite inefficient in Fibonacci heaps. |
---|
159 | */ |
---|
160 | void erase (const Item& item); /*vigyazat: az implementacioban it van*/ |
---|
161 | |
---|
162 | ///Decreases the priority of \c item to \c value. |
---|
163 | |
---|
164 | /** |
---|
165 | This method decreases the priority of \c item to \c value. |
---|
166 | \pre \c item must be stored in the heap with priority at least \c |
---|
167 | value w.r.t. Compare. |
---|
168 | */ |
---|
169 | void decrease (Item item, PrioType const value); /*vigyazat: az implementacioban it van*/ |
---|
170 | |
---|
171 | |
---|
172 | ///Increases the priority of \c item to \c value. |
---|
173 | |
---|
174 | /** |
---|
175 | This method sets the priority of \c item to \c value. Though |
---|
176 | there is no precondition on the priority of \c item, this |
---|
177 | method should be used only if one wants to \e increase |
---|
178 | (w.r.t. Compare) the priority of \c item, because this |
---|
179 | method is inefficient. |
---|
180 | */ |
---|
181 | void increase (Item it, PrioType const value) { |
---|
182 | erase(it); |
---|
183 | push(it, value); |
---|
184 | } |
---|
185 | |
---|
186 | |
---|
187 | ///Tells if \c item is in, was in, or has not been in the heap. |
---|
188 | |
---|
189 | /** |
---|
190 | This method returns PRE_HEAP if \c item has never been in the |
---|
191 | heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
---|
192 | otherwise. In the latter case it is possible that \c item will |
---|
193 | get back to the heap again. |
---|
194 | */ |
---|
195 | state_enum state(const Item &it); /*vigyazat: az implementacioban it van*/ |
---|
196 | |
---|
197 | |
---|
198 | |
---|
199 | // ********************************************************************** |
---|
200 | // IMPLEMENTATIONS |
---|
201 | // ********************************************************************** |
---|
202 | |
---|
203 | |
---|
204 | void set (Item const it, PrioType const value) { |
---|
205 | int i=iimap[it]; |
---|
206 | if ( i >= 0 && container[i].in ) { |
---|
207 | if ( comp(value, container[i].prio) ) decrease(it, value); |
---|
208 | if ( comp(container[i].prio, value) ) increase(it, value); |
---|
209 | } else push(it, value); |
---|
210 | } |
---|
211 | |
---|
212 | |
---|
213 | void push (Item const it, PrioType const value) { |
---|
214 | int i=iimap[it]; |
---|
215 | if ( i < 0 ) { |
---|
216 | int s=container.size(); |
---|
217 | iimap.set( it, s ); |
---|
218 | store st; |
---|
219 | st.name=it; |
---|
220 | container.push_back(st); |
---|
221 | i=s; |
---|
222 | } else { |
---|
223 | container[i].parent=container[i].child=-1; |
---|
224 | container[i].degree=0; |
---|
225 | container[i].in=true; |
---|
226 | container[i].marked=false; |
---|
227 | } |
---|
228 | |
---|
229 | if ( num_items ) { |
---|
230 | container[container[minimum].right_neighbor].left_neighbor=i; |
---|
231 | container[i].right_neighbor=container[minimum].right_neighbor; |
---|
232 | container[minimum].right_neighbor=i; |
---|
233 | container[i].left_neighbor=minimum; |
---|
234 | if ( comp( value, container[minimum].prio) ) minimum=i; |
---|
235 | } else { |
---|
236 | container[i].right_neighbor=container[i].left_neighbor=i; |
---|
237 | minimum=i; |
---|
238 | } |
---|
239 | container[i].prio=value; |
---|
240 | ++num_items; |
---|
241 | } |
---|
242 | |
---|
243 | |
---|
244 | void pop() { |
---|
245 | /*The first case is that there are only one root.*/ |
---|
246 | if ( container[minimum].left_neighbor==minimum ) { |
---|
247 | container[minimum].in=false; |
---|
248 | if ( container[minimum].degree!=0 ) { |
---|
249 | makeroot(container[minimum].child); |
---|
250 | minimum=container[minimum].child; |
---|
251 | balance(); |
---|
252 | } |
---|
253 | } else { |
---|
254 | int right=container[minimum].right_neighbor; |
---|
255 | unlace(minimum); |
---|
256 | container[minimum].in=false; |
---|
257 | if ( container[minimum].degree > 0 ) { |
---|
258 | int left=container[minimum].left_neighbor; |
---|
259 | int child=container[minimum].child; |
---|
260 | int last_child=container[child].left_neighbor; |
---|
261 | |
---|
262 | makeroot(child); |
---|
263 | |
---|
264 | container[left].right_neighbor=child; |
---|
265 | container[child].left_neighbor=left; |
---|
266 | container[right].left_neighbor=last_child; |
---|
267 | container[last_child].right_neighbor=right; |
---|
268 | } |
---|
269 | minimum=right; |
---|
270 | balance(); |
---|
271 | } // the case where there are more roots |
---|
272 | --num_items; |
---|
273 | } |
---|
274 | |
---|
275 | |
---|
276 | void erase (const Item& it) { |
---|
277 | int i=iimap[it]; |
---|
278 | |
---|
279 | if ( i >= 0 && container[i].in ) { |
---|
280 | if ( container[i].parent!=-1 ) { |
---|
281 | int p=container[i].parent; |
---|
282 | cut(i,p); |
---|
283 | cascade(p); |
---|
284 | } |
---|
285 | minimum=i; //As if its prio would be -infinity |
---|
286 | pop(); |
---|
287 | } |
---|
288 | } |
---|
289 | |
---|
290 | |
---|
291 | void decrease (Item it, PrioType const value) { |
---|
292 | int i=iimap[it]; |
---|
293 | container[i].prio=value; |
---|
294 | int p=container[i].parent; |
---|
295 | |
---|
296 | if ( p!=-1 && comp(value, container[p].prio) ) { |
---|
297 | cut(i,p); |
---|
298 | cascade(p); |
---|
299 | } |
---|
300 | if ( comp(value, container[minimum].prio) ) minimum=i; |
---|
301 | } |
---|
302 | |
---|
303 | |
---|
304 | state_enum state(const Item &it) const { |
---|
305 | int i=iimap[it]; |
---|
306 | if( i>=0 ) { |
---|
307 | if ( container[i].in ) i=0; |
---|
308 | else i=-2; |
---|
309 | } |
---|
310 | return state_enum(i); |
---|
311 | } |
---|
312 | |
---|
313 | |
---|
314 | private: |
---|
315 | |
---|
316 | void balance() { |
---|
317 | |
---|
318 | int maxdeg=int( floor( 2.08*log(double(container.size()))))+1; |
---|
319 | |
---|
320 | std::vector<int> A(maxdeg,-1); |
---|
321 | |
---|
322 | /* |
---|
323 | *Recall that now minimum does not point to the minimum prio element. |
---|
324 | *We set minimum to this during balance(). |
---|
325 | */ |
---|
326 | int anchor=container[minimum].left_neighbor; |
---|
327 | int next=minimum; |
---|
328 | bool end=false; |
---|
329 | |
---|
330 | do { |
---|
331 | int active=next; |
---|
332 | if ( anchor==active ) end=true; |
---|
333 | int d=container[active].degree; |
---|
334 | next=container[active].right_neighbor; |
---|
335 | |
---|
336 | while (A[d]!=-1) { |
---|
337 | if( comp(container[active].prio, container[A[d]].prio) ) { |
---|
338 | fuse(active,A[d]); |
---|
339 | } else { |
---|
340 | fuse(A[d],active); |
---|
341 | active=A[d]; |
---|
342 | } |
---|
343 | A[d]=-1; |
---|
344 | ++d; |
---|
345 | } |
---|
346 | A[d]=active; |
---|
347 | } while ( !end ); |
---|
348 | |
---|
349 | |
---|
350 | while ( container[minimum].parent >=0 ) minimum=container[minimum].parent; |
---|
351 | int s=minimum; |
---|
352 | int m=minimum; |
---|
353 | do { |
---|
354 | if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; |
---|
355 | s=container[s].right_neighbor; |
---|
356 | } while ( s != m ); |
---|
357 | } |
---|
358 | |
---|
359 | |
---|
360 | void makeroot (int c) { |
---|
361 | int s=c; |
---|
362 | do { |
---|
363 | container[s].parent=-1; |
---|
364 | s=container[s].right_neighbor; |
---|
365 | } while ( s != c ); |
---|
366 | } |
---|
367 | |
---|
368 | |
---|
369 | void cut (int a, int b) { |
---|
370 | /* |
---|
371 | *Replacing a from the children of b. |
---|
372 | */ |
---|
373 | --container[b].degree; |
---|
374 | |
---|
375 | if ( container[b].degree !=0 ) { |
---|
376 | int child=container[b].child; |
---|
377 | if ( child==a ) |
---|
378 | container[b].child=container[child].right_neighbor; |
---|
379 | unlace(a); |
---|
380 | } |
---|
381 | |
---|
382 | |
---|
383 | /*Lacing a to the roots.*/ |
---|
384 | int right=container[minimum].right_neighbor; |
---|
385 | container[minimum].right_neighbor=a; |
---|
386 | container[a].left_neighbor=minimum; |
---|
387 | container[a].right_neighbor=right; |
---|
388 | container[right].left_neighbor=a; |
---|
389 | |
---|
390 | container[a].parent=-1; |
---|
391 | container[a].marked=false; |
---|
392 | } |
---|
393 | |
---|
394 | |
---|
395 | void cascade (int a) |
---|
396 | { |
---|
397 | if ( container[a].parent!=-1 ) { |
---|
398 | int p=container[a].parent; |
---|
399 | |
---|
400 | if ( container[a].marked==false ) container[a].marked=true; |
---|
401 | else { |
---|
402 | cut(a,p); |
---|
403 | cascade(p); |
---|
404 | } |
---|
405 | } |
---|
406 | } |
---|
407 | |
---|
408 | |
---|
409 | void fuse (int a, int b) { |
---|
410 | unlace(b); |
---|
411 | |
---|
412 | /*Lacing b under a.*/ |
---|
413 | container[b].parent=a; |
---|
414 | |
---|
415 | if (container[a].degree==0) { |
---|
416 | container[b].left_neighbor=b; |
---|
417 | container[b].right_neighbor=b; |
---|
418 | container[a].child=b; |
---|
419 | } else { |
---|
420 | int child=container[a].child; |
---|
421 | int last_child=container[child].left_neighbor; |
---|
422 | container[child].left_neighbor=b; |
---|
423 | container[b].right_neighbor=child; |
---|
424 | container[last_child].right_neighbor=b; |
---|
425 | container[b].left_neighbor=last_child; |
---|
426 | } |
---|
427 | |
---|
428 | ++container[a].degree; |
---|
429 | |
---|
430 | container[b].marked=false; |
---|
431 | } |
---|
432 | |
---|
433 | |
---|
434 | /* |
---|
435 | *It is invoked only if a has siblings. |
---|
436 | */ |
---|
437 | void unlace (int a) { |
---|
438 | int leftn=container[a].left_neighbor; |
---|
439 | int rightn=container[a].right_neighbor; |
---|
440 | container[leftn].right_neighbor=rightn; |
---|
441 | container[rightn].left_neighbor=leftn; |
---|
442 | } |
---|
443 | |
---|
444 | |
---|
445 | class store { |
---|
446 | friend class FibHeap; |
---|
447 | |
---|
448 | Item name; |
---|
449 | int parent; |
---|
450 | int left_neighbor; |
---|
451 | int right_neighbor; |
---|
452 | int child; |
---|
453 | int degree; |
---|
454 | bool marked; |
---|
455 | bool in; |
---|
456 | PrioType prio; |
---|
457 | |
---|
458 | store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
---|
459 | }; |
---|
460 | |
---|
461 | }; |
---|
462 | |
---|
463 | } //namespace hugo |
---|
464 | #endif |
---|