// -*- C++ -*- /* *template > * *constructors: * *FibHeap(ItemIntMap), FibHeap(ItemIntMap, Compare) * *Member functions: * *int size() : returns the number of elements in the heap * *bool empty() : true iff size()=0 * *void set(Item, Prio) : calls push(Item, Prio) if Item is not * in the heap, and calls decrease/increase(Item, Prio) otherwise * *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item * mustn't be in the heap. * *Item top() : returns the Item with least Prio. * Must be called only if heap is nonempty. * *Prio prio() : returns the least Prio * Must be called only if heap is nonempty. * *Prio get(Item) : returns Prio of Item * Must be called only if Item is in heap. * *void pop() : deletes the Item with least Prio * *void erase(Item) : deletes Item from the heap if it was already there * *void decrease(Item, P) : decreases prio of Item to P. * Item must be in the heap with prio at least P. * *void increase(Item, P) : sets prio of Item to P. * *state_enum state(Item) : returns PRE_HEAP if Item has not been in the * heap until now, IN_HEAP if it is in the heap at the moment, and * POST_HEAP otherwise. In the latter case it is possible that Item * will get back to the heap again. * *In Fibonacci heaps, increase and erase are not efficient, in case of *many calls to these operations, it is better to use bin_heap. */ #ifndef FIB_HEAP_H #define FIB_HEAP_H ///\file ///\brief Fibonacci Heap implementation. #include #include #include namespace hugo { /// A Fibonacci Heap implementation. template > class FibHeap { typedef Prio PrioType; class store; std::vector container; int minimum; ItemIntMap &iimap; Compare comp; int num_items; ///\todo It is use nowhere ///\todo It doesn't conform to the naming conventions. public: enum state_enum { IN_HEAP = 0, PRE_HEAP = -1, POST_HEAP = -2 }; public : FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {} FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), iimap(_iimap), comp(_comp), num_items() {} int size() const { return num_items; } bool empty() const { return num_items==0; } void set (Item const it, PrioType const value) { int i=iimap[it]; if ( i >= 0 && container[i].in ) { if ( comp(value, container[i].prio) ) decrease(it, value); if ( comp(container[i].prio, value) ) increase(it, value); } else push(it, value); } void push (Item const it, PrioType const value) { int i=iimap[it]; if ( i < 0 ) { int s=container.size(); iimap.set( it, s ); store st; st.name=it; container.push_back(st); i=s; } else { container[i].parent=container[i].child=-1; container[i].degree=0; container[i].in=true; container[i].marked=false; } if ( num_items ) { container[container[minimum].right_neighbor].left_neighbor=i; container[i].right_neighbor=container[minimum].right_neighbor; container[minimum].right_neighbor=i; container[i].left_neighbor=minimum; if ( comp( value, container[minimum].prio) ) minimum=i; } else { container[i].right_neighbor=container[i].left_neighbor=i; minimum=i; } container[i].prio=value; ++num_items; } Item top() const { return container[minimum].name; } PrioType prio() const { return container[minimum].prio; } PrioType& operator[](const Item& it) { return container[iimap[it]].prio; } const PrioType& operator[](const Item& it) const { return container[iimap[it]].prio; } // const PrioType get(const Item& it) const { // return container[iimap[it]].prio; // } void pop() { /*The first case is that there are only one root.*/ if ( container[minimum].left_neighbor==minimum ) { container[minimum].in=false; if ( container[minimum].degree!=0 ) { makeroot(container[minimum].child); minimum=container[minimum].child; balance(); } } else { int right=container[minimum].right_neighbor; unlace(minimum); container[minimum].in=false; if ( container[minimum].degree > 0 ) { int left=container[minimum].left_neighbor; int child=container[minimum].child; int last_child=container[child].left_neighbor; makeroot(child); container[left].right_neighbor=child; container[child].left_neighbor=left; container[right].left_neighbor=last_child; container[last_child].right_neighbor=right; } minimum=right; balance(); } // the case where there are more roots --num_items; } void erase (const Item& it) { int i=iimap[it]; if ( i >= 0 && container[i].in ) { if ( container[i].parent!=-1 ) { int p=container[i].parent; cut(i,p); cascade(p); } minimum=i; //As if its prio would be -infinity pop(); } } void decrease (Item it, PrioType const value) { int i=iimap[it]; container[i].prio=value; int p=container[i].parent; if ( p!=-1 && comp(value, container[p].prio) ) { cut(i,p); cascade(p); } if ( comp(value, container[minimum].prio) ) minimum=i; } void increase (Item it, PrioType const value) { erase(it); push(it, value); } state_enum state(const Item &it) const { int i=iimap[it]; if( i>=0 ) { if ( container[i].in ) i=0; else i=-2; } return state_enum(i); } private: void balance() { int maxdeg=int( floor( 2.08*log(double(container.size()))))+1; std::vector A(maxdeg,-1); /* *Recall that now minimum does not point to the minimum prio element. *We set minimum to this during balance(). */ int anchor=container[minimum].left_neighbor; int next=minimum; bool end=false; do { int active=next; if ( anchor==active ) end=true; int d=container[active].degree; next=container[active].right_neighbor; while (A[d]!=-1) { if( comp(container[active].prio, container[A[d]].prio) ) { fuse(active,A[d]); } else { fuse(A[d],active); active=A[d]; } A[d]=-1; ++d; } A[d]=active; } while ( !end ); while ( container[minimum].parent >=0 ) minimum=container[minimum].parent; int s=minimum; int m=minimum; do { if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; s=container[s].right_neighbor; } while ( s != m ); } void makeroot (int c) { int s=c; do { container[s].parent=-1; s=container[s].right_neighbor; } while ( s != c ); } void cut (int a, int b) { /* *Replacing a from the children of b. */ --container[b].degree; if ( container[b].degree !=0 ) { int child=container[b].child; if ( child==a ) container[b].child=container[child].right_neighbor; unlace(a); } /*Lacing a to the roots.*/ int right=container[minimum].right_neighbor; container[minimum].right_neighbor=a; container[a].left_neighbor=minimum; container[a].right_neighbor=right; container[right].left_neighbor=a; container[a].parent=-1; container[a].marked=false; } void cascade (int a) { if ( container[a].parent!=-1 ) { int p=container[a].parent; if ( container[a].marked==false ) container[a].marked=true; else { cut(a,p); cascade(p); } } } void fuse (int a, int b) { unlace(b); /*Lacing b under a.*/ container[b].parent=a; if (container[a].degree==0) { container[b].left_neighbor=b; container[b].right_neighbor=b; container[a].child=b; } else { int child=container[a].child; int last_child=container[child].left_neighbor; container[child].left_neighbor=b; container[b].right_neighbor=child; container[last_child].right_neighbor=b; container[b].left_neighbor=last_child; } ++container[a].degree; container[b].marked=false; } /* *It is invoked only if a has siblings. */ void unlace (int a) { int leftn=container[a].left_neighbor; int rightn=container[a].right_neighbor; container[leftn].right_neighbor=rightn; container[rightn].left_neighbor=leftn; } class store { friend class FibHeap; Item name; int parent; int left_neighbor; int right_neighbor; int child; int degree; bool marked; bool in; PrioType prio; store() : parent(-1), child(-1), degree(), marked(false), in(true) {} }; }; } //namespace hugo #endif