COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/include/skeletons/graph.h @ 412:5d48b6773b73

Last change on this file since 412:5d48b6773b73 was 403:4ade9002b3a4, checked in by Alpar Juttner, 21 years ago

Try to compile before commit, please.

File size: 11.9 KB
RevLine 
[174]1// -*- c++ -*-
[298]2#ifndef HUGO_GRAPH_H
3#define HUGO_GRAPH_H
[52]4
[242]5///\file
6///\brief Declaration of GraphSkeleton.
7
[163]8#include <invalid.h>
[145]9
[163]10/// The namespace of HugoLib
11namespace hugo {
12
[182]13  // @defgroup empty_graph The GraphSkeleton class
[163]14  // @{
15
16  /// An empty graph class.
17 
[186]18  /// This class provides all the common features of a graph structure,
19  /// however completely without implementations and real data structures
[163]20  /// behind the interface.
21  /// All graph algorithms should compile with this class, but it will not
22  /// run properly, of course.
23  ///
24  /// It can be used for checking the interface compatibility,
25  /// or it can serve as a skeleton of a new graph structure.
[165]26  ///
27  /// Also, you will find here the full documentation of a certain graph
28  /// feature, the documentation of a real graph imlementation
29  /// like @ref ListGraph or
30  /// @ref SmartGraph will just refer to this structure.
[182]31  class GraphSkeleton
[163]32  {
[147]33  public:
[320]34    /// Defalult constructor.
35    GraphSkeleton() {}
36    ///Copy consructor.
[321]37
38    ///\todo It is not clear, what we expect from a copy constructor.
39    ///E.g. How to assign the nodes/edges to each other? What about maps?
[320]40    GraphSkeleton(const GraphSkeleton &G) {}
41
[163]42    /// The base type of the node iterators.
[182]43
[186]44    /// This is the base type of each node iterators,
[182]45    /// thus each kind of node iterator will convert to this.
[163]46    class Node {
47    public:
48      /// @warning The default constructor sets the iterator
49      /// to an undefined value.
50      Node() {}   //FIXME
[182]51      /// Invalid constructor \& conversion.
52
53      /// This constructor initializes the iterator to be invalid.
54      /// \sa Invalid for more details.
55
[174]56      Node(Invalid) {}
[182]57      //Node(const Node &) {}
58
59      /// Two iterators are equal if and only if they point to the
60      /// same object or both are invalid.
61      bool operator==(Node n) const { return true; }
62
63      /// \sa \ref operator==(Node n)
64      ///
65      bool operator!=(Node n) const { return true; }
66
67      bool operator<(Node n) const { return true; }
[163]68    };
[147]69   
[163]70    /// This iterator goes through each node.
[186]71
72    /// This iterator goes through each node.
73    /// Its usage is quite simple, for example you can count the number
74    /// of nodes in graph \c G of type \c Graph like this:
75    /// \code
76    ///int count=0;
77    ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
78    /// \endcode
[163]79    class NodeIt : public Node {
80    public:
81      /// @warning The default constructor sets the iterator
82      /// to an undefined value.
83      NodeIt() {} //FIXME
[182]84      /// Invalid constructor \& conversion.
85
[163]86      /// Initialize the iterator to be invalid
[182]87      /// \sa Invalid for more details.
[174]88      NodeIt(Invalid) {}
[163]89      /// Sets the iterator to the first node of \c G.
[182]90      NodeIt(const GraphSkeleton &G) {}
91      /// @warning The default constructor sets the iterator
92      /// to an undefined value.
93      NodeIt(const NodeIt &) {}
[163]94    };
95   
96   
97    /// The base type of the edge iterators.
98    class Edge {
99    public:
100      /// @warning The default constructor sets the iterator
101      /// to an undefined value.
102      Edge() {}   //FIXME
103      /// Initialize the iterator to be invalid
[174]104      Edge(Invalid) {}
[182]105      /// Two iterators are equal if and only if they point to the
106      /// same object or both are invalid.
107      bool operator==(Edge n) const { return true; }
108      bool operator!=(Edge n) const { return true; }
109      bool operator<(Edge n) const { return true; }
[163]110    };
111   
[242]112    /// This iterator goes trough the outgoing edges of a node.
[186]113
[242]114    /// This iterator goes trough the \e outgoing edges of a certain node
[186]115    /// of a graph.
116    /// Its usage is quite simple, for example you can count the number
117    /// of outgoing edges of a node \c n
118    /// in graph \c G of type \c Graph as follows.
119    /// \code
120    ///int count=0;
121    ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
122    /// \endcode
[163]123   
124    class OutEdgeIt : public Edge {
125    public:
126      /// @warning The default constructor sets the iterator
127      /// to an undefined value.
128      OutEdgeIt() {}
129      /// Initialize the iterator to be invalid
[174]130      OutEdgeIt(Invalid) {}
[163]131      /// This constructor sets the iterator to first outgoing edge.
132   
133      /// This constructor set the iterator to the first outgoing edge of
134      /// node
135      ///@param n the node
136      ///@param G the graph
[182]137      OutEdgeIt(const GraphSkeleton & G, Node n) {}
[163]138    };
139
[242]140    /// This iterator goes trough the incoming edges of a node.
[186]141
[242]142    /// This iterator goes trough the \e incoming edges of a certain node
[186]143    /// of a graph.
144    /// Its usage is quite simple, for example you can count the number
145    /// of outgoing edges of a node \c n
146    /// in graph \c G of type \c Graph as follows.
147    /// \code
148    ///int count=0;
149    ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
150    /// \endcode
151
[163]152    class InEdgeIt : public Edge {
153    public:
154      /// @warning The default constructor sets the iterator
155      /// to an undefined value.
156      InEdgeIt() {}
157      /// Initialize the iterator to be invalid
[174]158      InEdgeIt(Invalid) {}
[182]159      InEdgeIt(const GraphSkeleton &, Node) {}   
[163]160    };
161    //  class SymEdgeIt : public Edge {};
[186]162
163    /// This iterator goes through each edge.
164
165    /// This iterator goes through each edge of a graph.
166    /// Its usage is quite simple, for example you can count the number
167    /// of edges in a graph \c G of type \c Graph as follows:
168    /// \code
169    ///int count=0;
170    ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
171    /// \endcode
[163]172    class EdgeIt : public Edge {
173    public:
174      /// @warning The default constructor sets the iterator
175      /// to an undefined value.
176      EdgeIt() {}
177      /// Initialize the iterator to be invalid
[174]178      EdgeIt(Invalid) {}
[182]179      EdgeIt(const GraphSkeleton &) {}
[163]180    };
181
182    /// First node of the graph.
183
184    /// \post \c i and the return value will be the first node.
185    ///
186    NodeIt &first(NodeIt &i) const { return i;}
187
[242]188    /// The first incoming edge.
189    InEdgeIt &first(InEdgeIt &i, Node n) const { return i;}
[163]190    /// The first outgoing edge.
191    OutEdgeIt &first(OutEdgeIt &i, Node n) const { return i;}
192    //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
193    /// The first edge of the Graph.
194    EdgeIt &first(EdgeIt &i) const { return i;}
195
196//     Node getNext(Node) const {}
197//     InEdgeIt getNext(InEdgeIt) const {}
198//     OutEdgeIt getNext(OutEdgeIt) const {}
199//     //SymEdgeIt getNext(SymEdgeIt) const {}
200//     EdgeIt getNext(EdgeIt) const {}
201
202    /// Go to the next node.
[178]203    NodeIt &next(NodeIt &i) const { return i;}
[163]204    /// Go to the next incoming edge.
205    InEdgeIt &next(InEdgeIt &i) const { return i;}
206    /// Go to the next outgoing edge.
207    OutEdgeIt &next(OutEdgeIt &i) const { return i;}
208    //SymEdgeIt &next(SymEdgeIt &) const {}
209    /// Go to the next edge.
210    EdgeIt &next(EdgeIt &i) const { return i;}
211
212    ///Gives back the head node of an edge.
213    Node head(Edge) const { return INVALID; }
214    ///Gives back the tail node of an edge.
215    Node tail(Edge) const { return INVALID; }
[52]216 
[163]217    //   Node aNode(InEdgeIt) const {}
218    //   Node aNode(OutEdgeIt) const {}
219    //   Node aNode(SymEdgeIt) const {}
220
221    //   Node bNode(InEdgeIt) const {}
222    //   Node bNode(OutEdgeIt) const {}
223    //   Node bNode(SymEdgeIt) const {}
224
225    /// Checks if a node iterator is valid
[186]226
227    ///\todo Maybe, it would be better if iterator converted to
228    ///bool directly, as Jacint prefers.
[320]229    bool valid(const Node&) const { return true;}
[163]230    /// Checks if an edge iterator is valid
[186]231
232    ///\todo Maybe, it would be better if iterator converted to
233    ///bool directly, as Jacint prefers.
[320]234    bool valid(const Edge&) const { return true;}
[163]235
236    ///Gives back the \e id of a node.
[182]237
[242]238    ///\warning Not all graph structures provide this feature.
[182]239    ///
[320]240    int id(const Node&) const { return 0;}
[163]241    ///Gives back the \e id of an edge.
[182]242
[242]243    ///\warning Not all graph structures provide this feature.
[182]244    ///
[320]245    int id(const Edge&) const { return 0;}
[163]246
247    //void setInvalid(Node &) const {};
248    //void setInvalid(Edge &) const {};
249 
[182]250    ///Add a new node to the graph.
251
252    /// \return the new node.
[186]253    ///
[163]254    Node addNode() { return INVALID;}
[182]255    ///Add a new edge to the graph.
256
257    ///Add a new edge to the graph with tail node \c tail
258    ///and head node \c head.
259    ///\return the new edge.
[163]260    Edge addEdge(Node tail, Node head) { return INVALID;}
261   
[242]262    /// Resets the graph.
[182]263
264    /// This function deletes all edges and nodes of the graph.
265    /// It also frees the memory allocated to store them.
[163]266    void clear() {}
267
[179]268    int nodeNum() const { return 0;}
269    int edgeNum() const { return 0;}
[163]270
[186]271    ///Read/write/reference map of the nodes to type \c T.
[182]272
[186]273    ///Read/write/reference map of the nodes to type \c T.
274    /// \sa MemoryMapSkeleton
[182]275    /// \todo We may need copy constructor
276    /// \todo We may need conversion from other nodetype
277    /// \todo We may need operator=
[216]278    /// \warning Making maps that can handle bool type (NodeMap<bool>)
279    /// needs extra attention!
[182]280
[163]281    template<class T> class NodeMap
282    {
283    public:
284      typedef T ValueType;
285      typedef Node KeyType;
286
[182]287      NodeMap(const GraphSkeleton &G) {}
288      NodeMap(const GraphSkeleton &G, T t) {}
[163]289
[182]290      template<typename TT> NodeMap(const NodeMap<TT> &m) {}
291
292      /// Sets the value of a node.
293
294      /// Sets the value associated with node \c i to the value \c t.
295      ///
[163]296      void set(Node i, T t) {}
[182]297      /// Gets the value of a node.
298      T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary
299      T &operator[](Node i) {return *(T*)0;}
300      const T &operator[](Node i) const {return *(T*)0;}
[163]301
[182]302      /// Updates the map if the graph has been changed
303
304      /// \todo Do we need this?
305      ///
[163]306      void update() {}
307      void update(T a) {}   //FIXME: Is it necessary
308    };
309
[186]310    ///Read/write/reference map of the edges to type \c T.
[182]311
[186]312    ///Read/write/reference map of the edges to type \c T.
313    ///It behaves exactly in the same way as \ref NodeMap.
314    /// \sa NodeMap
315    /// \sa MemoryMapSkeleton
316    /// \todo We may need copy constructor
317    /// \todo We may need conversion from other edgetype
318    /// \todo We may need operator=
[163]319    template<class T> class EdgeMap
320    {
321    public:
322      typedef T ValueType;
323      typedef Edge KeyType;
324
[182]325      EdgeMap(const GraphSkeleton &G) {}
326      EdgeMap(const GraphSkeleton &G, T t) {}
[163]327   
328      void set(Edge i, T t) {}
[182]329      T get(Edge i) const {return *(T*)0;}
330      T &operator[](Edge i) {return *(T*)0;}
[163]331   
332      void update() {}
333      void update(T a) {}   //FIXME: Is it necessary
334    };
[147]335  };
[52]336
[242]337  /// An empty eraseable graph class.
338 
339  /// This class provides all the common features of an \e eraseable graph
340  /// structure,
341  /// however completely without implementations and real data structures
342  /// behind the interface.
343  /// All graph algorithms should compile with this class, but it will not
344  /// run properly, of course.
345  ///
346  /// \todo This blabla could be replaced by a sepatate description about
347  /// Skeletons.
348  ///
349  /// It can be used for checking the interface compatibility,
350  /// or it can serve as a skeleton of a new graph structure.
351  ///
352  /// Also, you will find here the full documentation of a certain graph
353  /// feature, the documentation of a real graph imlementation
354  /// like @ref ListGraph or
355  /// @ref SmartGraph will just refer to this structure.
356  class EraseableGraphSkeleton : public GraphSkeleton
357  {
358  public:
359    /// Deletes a node.
360    void erase(Node n) {}
361    /// Deletes an edge.
362    void erase(Edge e) {}
363
364    /// Defalult constructor.
[403]365    EraseableGraphSkeleton() {}
[242]366    ///Copy consructor.
[403]367    EraseableGraphSkeleton(const GraphSkeleton &G) {}
[242]368  };
369
370 
[163]371  // @}
[147]372
[174]373} //namespace hugo
[52]374
[145]375
376
[182]377// class EmptyBipGraph : public Graph Skeleton
[147]378// {
[163]379//   class ANode {};
380//   class BNode {};
[145]381
[163]382//   ANode &next(ANode &) {}
383//   BNode &next(BNode &) {}
[145]384
[163]385//   ANode &getFirst(ANode &) const {}
386//   BNode &getFirst(BNode &) const {}
[145]387
[147]388//   enum NodeClass { A = 0, B = 1 };
[163]389//   NodeClass getClass(Node n) {}
[147]390
391// }
[174]392
[298]393#endif // HUGO_GRAPH_H
Note: See TracBrowser for help on using the repository browser.