1 | // -*- c++ -*- |
---|
2 | #ifndef HUGO_SKELETON_GRAPH_H |
---|
3 | #define HUGO_SKELETON_GRAPH_H |
---|
4 | |
---|
5 | ///\file |
---|
6 | ///\brief Declaration of GraphSkeleton. |
---|
7 | |
---|
8 | #include <invalid.h> |
---|
9 | |
---|
10 | /// The namespace of HugoLib |
---|
11 | namespace hugo { |
---|
12 | |
---|
13 | // @defgroup empty_graph The GraphSkeleton class |
---|
14 | // @{ |
---|
15 | |
---|
16 | /// An empty graph class. |
---|
17 | |
---|
18 | /// This class provides all the common features of a graph structure, |
---|
19 | /// however completely without implementations and real data structures |
---|
20 | /// behind the interface. |
---|
21 | /// All graph algorithms should compile with this class, but it will not |
---|
22 | /// run properly, of course. |
---|
23 | /// |
---|
24 | /// It can be used for checking the interface compatibility, |
---|
25 | /// or it can serve as a skeleton of a new graph structure. |
---|
26 | /// |
---|
27 | /// Also, you will find here the full documentation of a certain graph |
---|
28 | /// feature, the documentation of a real graph imlementation |
---|
29 | /// like @ref ListGraph or |
---|
30 | /// @ref SmartGraph will just refer to this structure. |
---|
31 | class GraphSkeleton |
---|
32 | { |
---|
33 | public: |
---|
34 | /// Defalult constructor. |
---|
35 | GraphSkeleton() {} |
---|
36 | ///Copy consructor. |
---|
37 | |
---|
38 | ///\todo It is not clear, what we expect from a copy constructor. |
---|
39 | ///E.g. How to assign the nodes/edges to each other? What about maps? |
---|
40 | GraphSkeleton(const GraphSkeleton &G) {} |
---|
41 | |
---|
42 | /// The base type of the node iterators. |
---|
43 | |
---|
44 | /// This is the base type of each node iterators, |
---|
45 | /// thus each kind of node iterator will convert to this. |
---|
46 | class Node { |
---|
47 | public: |
---|
48 | /// @warning The default constructor sets the iterator |
---|
49 | /// to an undefined value. |
---|
50 | Node() {} //FIXME |
---|
51 | /// Invalid constructor \& conversion. |
---|
52 | |
---|
53 | /// This constructor initializes the iterator to be invalid. |
---|
54 | /// \sa Invalid for more details. |
---|
55 | |
---|
56 | Node(Invalid) {} |
---|
57 | //Node(const Node &) {} |
---|
58 | |
---|
59 | /// Two iterators are equal if and only if they point to the |
---|
60 | /// same object or both are invalid. |
---|
61 | bool operator==(Node) const { return true; } |
---|
62 | |
---|
63 | /// \sa \ref operator==(Node n) |
---|
64 | /// |
---|
65 | bool operator!=(Node) const { return true; } |
---|
66 | |
---|
67 | bool operator<(Node) const { return true; } |
---|
68 | }; |
---|
69 | |
---|
70 | /// This iterator goes through each node. |
---|
71 | |
---|
72 | /// This iterator goes through each node. |
---|
73 | /// Its usage is quite simple, for example you can count the number |
---|
74 | /// of nodes in graph \c G of type \c Graph like this: |
---|
75 | /// \code |
---|
76 | ///int count=0; |
---|
77 | ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++; |
---|
78 | /// \endcode |
---|
79 | class NodeIt : public Node { |
---|
80 | public: |
---|
81 | /// @warning The default constructor sets the iterator |
---|
82 | /// to an undefined value. |
---|
83 | NodeIt() {} //FIXME |
---|
84 | /// Invalid constructor \& conversion. |
---|
85 | |
---|
86 | /// Initialize the iterator to be invalid |
---|
87 | /// \sa Invalid for more details. |
---|
88 | NodeIt(Invalid) {} |
---|
89 | /// Sets the iterator to the first node of \c G. |
---|
90 | NodeIt(const GraphSkeleton &) {} |
---|
91 | /// @warning The default constructor sets the iterator |
---|
92 | /// to an undefined value. |
---|
93 | NodeIt(const NodeIt &n) : Node(n) {} |
---|
94 | }; |
---|
95 | |
---|
96 | |
---|
97 | /// The base type of the edge iterators. |
---|
98 | class Edge { |
---|
99 | public: |
---|
100 | /// @warning The default constructor sets the iterator |
---|
101 | /// to an undefined value. |
---|
102 | Edge() {} //FIXME |
---|
103 | /// Initialize the iterator to be invalid |
---|
104 | Edge(Invalid) {} |
---|
105 | /// Two iterators are equal if and only if they point to the |
---|
106 | /// same object or both are invalid. |
---|
107 | bool operator==(Edge) const { return true; } |
---|
108 | bool operator!=(Edge) const { return true; } |
---|
109 | bool operator<(Edge) const { return true; } |
---|
110 | }; |
---|
111 | |
---|
112 | /// This iterator goes trough the outgoing edges of a node. |
---|
113 | |
---|
114 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
115 | /// of a graph. |
---|
116 | /// Its usage is quite simple, for example you can count the number |
---|
117 | /// of outgoing edges of a node \c n |
---|
118 | /// in graph \c G of type \c Graph as follows. |
---|
119 | /// \code |
---|
120 | ///int count=0; |
---|
121 | ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
122 | /// \endcode |
---|
123 | |
---|
124 | class OutEdgeIt : public Edge { |
---|
125 | public: |
---|
126 | /// @warning The default constructor sets the iterator |
---|
127 | /// to an undefined value. |
---|
128 | OutEdgeIt() {} |
---|
129 | /// Initialize the iterator to be invalid |
---|
130 | OutEdgeIt(Invalid) {} |
---|
131 | /// This constructor sets the iterator to first outgoing edge. |
---|
132 | |
---|
133 | /// This constructor set the iterator to the first outgoing edge of |
---|
134 | /// node |
---|
135 | ///@param n the node |
---|
136 | ///@param G the graph |
---|
137 | OutEdgeIt(const GraphSkeleton &, Node) {} |
---|
138 | }; |
---|
139 | |
---|
140 | /// This iterator goes trough the incoming edges of a node. |
---|
141 | |
---|
142 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
143 | /// of a graph. |
---|
144 | /// Its usage is quite simple, for example you can count the number |
---|
145 | /// of outgoing edges of a node \c n |
---|
146 | /// in graph \c G of type \c Graph as follows. |
---|
147 | /// \code |
---|
148 | ///int count=0; |
---|
149 | ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
150 | /// \endcode |
---|
151 | |
---|
152 | class InEdgeIt : public Edge { |
---|
153 | public: |
---|
154 | /// @warning The default constructor sets the iterator |
---|
155 | /// to an undefined value. |
---|
156 | InEdgeIt() {} |
---|
157 | /// Initialize the iterator to be invalid |
---|
158 | InEdgeIt(Invalid) {} |
---|
159 | InEdgeIt(const GraphSkeleton &, Node) {} |
---|
160 | }; |
---|
161 | // class SymEdgeIt : public Edge {}; |
---|
162 | |
---|
163 | /// This iterator goes through each edge. |
---|
164 | |
---|
165 | /// This iterator goes through each edge of a graph. |
---|
166 | /// Its usage is quite simple, for example you can count the number |
---|
167 | /// of edges in a graph \c G of type \c Graph as follows: |
---|
168 | /// \code |
---|
169 | ///int count=0; |
---|
170 | ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++; |
---|
171 | /// \endcode |
---|
172 | class EdgeIt : public Edge { |
---|
173 | public: |
---|
174 | /// @warning The default constructor sets the iterator |
---|
175 | /// to an undefined value. |
---|
176 | EdgeIt() {} |
---|
177 | /// Initialize the iterator to be invalid |
---|
178 | EdgeIt(Invalid) {} |
---|
179 | EdgeIt(const GraphSkeleton &) {} |
---|
180 | }; |
---|
181 | |
---|
182 | /// First node of the graph. |
---|
183 | |
---|
184 | /// \retval i the first node. |
---|
185 | /// \return the first node. |
---|
186 | /// |
---|
187 | NodeIt &first(NodeIt &i) const { return i;} |
---|
188 | |
---|
189 | /// The first incoming edge. |
---|
190 | InEdgeIt &first(InEdgeIt &i, Node) const { return i;} |
---|
191 | /// The first outgoing edge. |
---|
192 | OutEdgeIt &first(OutEdgeIt &i, Node) const { return i;} |
---|
193 | // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
---|
194 | /// The first edge of the Graph. |
---|
195 | EdgeIt &first(EdgeIt &i) const { return i;} |
---|
196 | |
---|
197 | // Node getNext(Node) const {} |
---|
198 | // InEdgeIt getNext(InEdgeIt) const {} |
---|
199 | // OutEdgeIt getNext(OutEdgeIt) const {} |
---|
200 | // //SymEdgeIt getNext(SymEdgeIt) const {} |
---|
201 | // EdgeIt getNext(EdgeIt) const {} |
---|
202 | |
---|
203 | /// Go to the next node. |
---|
204 | NodeIt &next(NodeIt &i) const { return i;} |
---|
205 | /// Go to the next incoming edge. |
---|
206 | InEdgeIt &next(InEdgeIt &i) const { return i;} |
---|
207 | /// Go to the next outgoing edge. |
---|
208 | OutEdgeIt &next(OutEdgeIt &i) const { return i;} |
---|
209 | //SymEdgeIt &next(SymEdgeIt &) const {} |
---|
210 | /// Go to the next edge. |
---|
211 | EdgeIt &next(EdgeIt &i) const { return i;} |
---|
212 | |
---|
213 | ///Gives back the head node of an edge. |
---|
214 | Node head(Edge) const { return INVALID; } |
---|
215 | ///Gives back the tail node of an edge. |
---|
216 | Node tail(Edge) const { return INVALID; } |
---|
217 | |
---|
218 | // Node aNode(InEdgeIt) const {} |
---|
219 | // Node aNode(OutEdgeIt) const {} |
---|
220 | // Node aNode(SymEdgeIt) const {} |
---|
221 | |
---|
222 | // Node bNode(InEdgeIt) const {} |
---|
223 | // Node bNode(OutEdgeIt) const {} |
---|
224 | // Node bNode(SymEdgeIt) const {} |
---|
225 | |
---|
226 | /// Checks if a node iterator is valid |
---|
227 | |
---|
228 | ///\todo Maybe, it would be better if iterator converted to |
---|
229 | ///bool directly, as Jacint prefers. |
---|
230 | bool valid(const Node&) const { return true;} |
---|
231 | /// Checks if an edge iterator is valid |
---|
232 | |
---|
233 | ///\todo Maybe, it would be better if iterator converted to |
---|
234 | ///bool directly, as Jacint prefers. |
---|
235 | bool valid(const Edge&) const { return true;} |
---|
236 | |
---|
237 | ///Gives back the \e id of a node. |
---|
238 | |
---|
239 | ///\warning Not all graph structures provide this feature. |
---|
240 | /// |
---|
241 | int id(const Node&) const { return 0;} |
---|
242 | ///Gives back the \e id of an edge. |
---|
243 | |
---|
244 | ///\warning Not all graph structures provide this feature. |
---|
245 | /// |
---|
246 | int id(const Edge&) const { return 0;} |
---|
247 | |
---|
248 | //void setInvalid(Node &) const {}; |
---|
249 | //void setInvalid(Edge &) const {}; |
---|
250 | |
---|
251 | ///Add a new node to the graph. |
---|
252 | |
---|
253 | /// \return the new node. |
---|
254 | /// |
---|
255 | Node addNode() { return INVALID;} |
---|
256 | ///Add a new edge to the graph. |
---|
257 | |
---|
258 | ///Add a new edge to the graph with tail node \c tail |
---|
259 | ///and head node \c head. |
---|
260 | ///\return the new edge. |
---|
261 | Edge addEdge(Node, Node) { return INVALID;} |
---|
262 | |
---|
263 | /// Resets the graph. |
---|
264 | |
---|
265 | /// This function deletes all edges and nodes of the graph. |
---|
266 | /// It also frees the memory allocated to store them. |
---|
267 | void clear() {} |
---|
268 | |
---|
269 | int nodeNum() const { return 0;} |
---|
270 | int edgeNum() const { return 0;} |
---|
271 | |
---|
272 | ///Read/write/reference map of the nodes to type \c T. |
---|
273 | |
---|
274 | ///Read/write/reference map of the nodes to type \c T. |
---|
275 | /// \sa MemoryMapSkeleton |
---|
276 | /// \todo We may need copy constructor |
---|
277 | /// \todo We may need conversion from other nodetype |
---|
278 | /// \todo We may need operator= |
---|
279 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
280 | /// needs extra attention! |
---|
281 | |
---|
282 | template<class T> class NodeMap |
---|
283 | { |
---|
284 | public: |
---|
285 | typedef T ValueType; |
---|
286 | typedef Node KeyType; |
---|
287 | |
---|
288 | NodeMap(const GraphSkeleton &) {} |
---|
289 | NodeMap(const GraphSkeleton &, T) {} |
---|
290 | |
---|
291 | template<typename TT> NodeMap(const NodeMap<TT> &) {} |
---|
292 | |
---|
293 | /// Sets the value of a node. |
---|
294 | |
---|
295 | /// Sets the value associated with node \c i to the value \c t. |
---|
296 | /// |
---|
297 | void set(Node, T) {} |
---|
298 | // Gets the value of a node. |
---|
299 | //T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary? |
---|
300 | T &operator[](Node) {return *(T*)0;} |
---|
301 | const T &operator[](Node) const {return *(T*)0;} |
---|
302 | |
---|
303 | /// Updates the map if the graph has been changed |
---|
304 | |
---|
305 | /// \todo Do we need this? |
---|
306 | /// |
---|
307 | void update() {} |
---|
308 | void update(T a) {} //FIXME: Is it necessary |
---|
309 | }; |
---|
310 | |
---|
311 | ///Read/write/reference map of the edges to type \c T. |
---|
312 | |
---|
313 | ///Read/write/reference map of the edges to type \c T. |
---|
314 | ///It behaves exactly in the same way as \ref NodeMap. |
---|
315 | /// \sa NodeMap |
---|
316 | /// \sa MemoryMapSkeleton |
---|
317 | /// \todo We may need copy constructor |
---|
318 | /// \todo We may need conversion from other edgetype |
---|
319 | /// \todo We may need operator= |
---|
320 | template<class T> class EdgeMap |
---|
321 | { |
---|
322 | public: |
---|
323 | typedef T ValueType; |
---|
324 | typedef Edge KeyType; |
---|
325 | |
---|
326 | EdgeMap(const GraphSkeleton &) {} |
---|
327 | EdgeMap(const GraphSkeleton &, T ) {} |
---|
328 | |
---|
329 | ///\todo It can copy between different types. |
---|
330 | /// |
---|
331 | template<typename TT> EdgeMap(const EdgeMap<TT> &) {} |
---|
332 | |
---|
333 | void set(Edge, T) {} |
---|
334 | //T get(Edge) const {return *(T*)0;} |
---|
335 | T &operator[](Edge) {return *(T*)0;} |
---|
336 | const T &operator[](Edge) const {return *(T*)0;} |
---|
337 | |
---|
338 | void update() {} |
---|
339 | void update(T a) {} //FIXME: Is it necessary |
---|
340 | }; |
---|
341 | }; |
---|
342 | |
---|
343 | /// An empty eraseable graph class. |
---|
344 | |
---|
345 | /// This class provides all the common features of an \e eraseable graph |
---|
346 | /// structure, |
---|
347 | /// however completely without implementations and real data structures |
---|
348 | /// behind the interface. |
---|
349 | /// All graph algorithms should compile with this class, but it will not |
---|
350 | /// run properly, of course. |
---|
351 | /// |
---|
352 | /// \todo This blabla could be replaced by a sepatate description about |
---|
353 | /// Skeletons. |
---|
354 | /// |
---|
355 | /// It can be used for checking the interface compatibility, |
---|
356 | /// or it can serve as a skeleton of a new graph structure. |
---|
357 | /// |
---|
358 | /// Also, you will find here the full documentation of a certain graph |
---|
359 | /// feature, the documentation of a real graph imlementation |
---|
360 | /// like @ref ListGraph or |
---|
361 | /// @ref SmartGraph will just refer to this structure. |
---|
362 | class EraseableGraphSkeleton : public GraphSkeleton |
---|
363 | { |
---|
364 | public: |
---|
365 | /// Deletes a node. |
---|
366 | void erase(Node n) {} |
---|
367 | /// Deletes an edge. |
---|
368 | void erase(Edge e) {} |
---|
369 | |
---|
370 | /// Defalult constructor. |
---|
371 | EraseableGraphSkeleton() {} |
---|
372 | ///Copy consructor. |
---|
373 | EraseableGraphSkeleton(const GraphSkeleton &G) {} |
---|
374 | }; |
---|
375 | |
---|
376 | |
---|
377 | // @} |
---|
378 | |
---|
379 | } //namespace hugo |
---|
380 | |
---|
381 | |
---|
382 | |
---|
383 | // class EmptyBipGraph : public Graph Skeleton |
---|
384 | // { |
---|
385 | // class ANode {}; |
---|
386 | // class BNode {}; |
---|
387 | |
---|
388 | // ANode &next(ANode &) {} |
---|
389 | // BNode &next(BNode &) {} |
---|
390 | |
---|
391 | // ANode &getFirst(ANode &) const {} |
---|
392 | // BNode &getFirst(BNode &) const {} |
---|
393 | |
---|
394 | // enum NodeClass { A = 0, B = 1 }; |
---|
395 | // NodeClass getClass(Node n) {} |
---|
396 | |
---|
397 | // } |
---|
398 | |
---|
399 | #endif // HUGO_SKELETON_GRAPH_H |
---|