COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/include/skeletons/graph.h @ 294:f0ff6981d4fd

Last change on this file since 294:f0ff6981d4fd was 254:483ba4ffe90a, checked in by Alpar Juttner, 21 years ago
File size: 11.8 KB
Line 
1// -*- c++ -*-
2#ifndef HUGO_EMPTYGRAPH_H
3#define HUGO_EMPTYGRAPH_H
4
5///\file
6///\brief Declaration of GraphSkeleton.
7
8#include <invalid.h>
9
10/// The namespace of HugoLib
11namespace hugo {
12
13  // @defgroup empty_graph The GraphSkeleton class
14  // @{
15
16  /// An empty graph class.
17 
18  /// This class provides all the common features of a graph structure,
19  /// however completely without implementations and real data structures
20  /// behind the interface.
21  /// All graph algorithms should compile with this class, but it will not
22  /// run properly, of course.
23  ///
24  /// It can be used for checking the interface compatibility,
25  /// or it can serve as a skeleton of a new graph structure.
26  ///
27  /// Also, you will find here the full documentation of a certain graph
28  /// feature, the documentation of a real graph imlementation
29  /// like @ref ListGraph or
30  /// @ref SmartGraph will just refer to this structure.
31  class GraphSkeleton
32  {
33  public:
34   
35    /// The base type of the node iterators.
36
37    /// This is the base type of each node iterators,
38    /// thus each kind of node iterator will convert to this.
39    class Node {
40    public:
41      /// @warning The default constructor sets the iterator
42      /// to an undefined value.
43      Node() {}   //FIXME
44      /// Invalid constructor \& conversion.
45
46      /// This constructor initializes the iterator to be invalid.
47      /// \sa Invalid for more details.
48
49      Node(Invalid) {}
50      //Node(const Node &) {}
51
52      /// Two iterators are equal if and only if they point to the
53      /// same object or both are invalid.
54      bool operator==(Node n) const { return true; }
55
56      /// \sa \ref operator==(Node n)
57      ///
58      bool operator!=(Node n) const { return true; }
59
60      bool operator<(Node n) const { return true; }
61    };
62   
63    /// This iterator goes through each node.
64
65    /// This iterator goes through each node.
66    /// Its usage is quite simple, for example you can count the number
67    /// of nodes in graph \c G of type \c Graph like this:
68    /// \code
69    ///int count=0;
70    ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
71    /// \endcode
72    class NodeIt : public Node {
73    public:
74      /// @warning The default constructor sets the iterator
75      /// to an undefined value.
76      NodeIt() {} //FIXME
77      /// Invalid constructor \& conversion.
78
79      /// Initialize the iterator to be invalid
80      /// \sa Invalid for more details.
81      NodeIt(Invalid) {}
82      /// Sets the iterator to the first node of \c G.
83      NodeIt(const GraphSkeleton &G) {}
84      /// @warning The default constructor sets the iterator
85      /// to an undefined value.
86      NodeIt(const NodeIt &) {}
87    };
88   
89   
90    /// The base type of the edge iterators.
91    class Edge {
92    public:
93      /// @warning The default constructor sets the iterator
94      /// to an undefined value.
95      Edge() {}   //FIXME
96      /// Initialize the iterator to be invalid
97      Edge(Invalid) {}
98      /// Two iterators are equal if and only if they point to the
99      /// same object or both are invalid.
100      bool operator==(Edge n) const { return true; }
101      bool operator!=(Edge n) const { return true; }
102      bool operator<(Edge n) const { return true; }
103    };
104   
105    /// This iterator goes trough the outgoing edges of a node.
106
107    /// This iterator goes trough the \e outgoing edges of a certain node
108    /// of a graph.
109    /// Its usage is quite simple, for example you can count the number
110    /// of outgoing edges of a node \c n
111    /// in graph \c G of type \c Graph as follows.
112    /// \code
113    ///int count=0;
114    ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
115    /// \endcode
116   
117    class OutEdgeIt : public Edge {
118    public:
119      /// @warning The default constructor sets the iterator
120      /// to an undefined value.
121      OutEdgeIt() {}
122      /// Initialize the iterator to be invalid
123      OutEdgeIt(Invalid) {}
124      /// This constructor sets the iterator to first outgoing edge.
125   
126      /// This constructor set the iterator to the first outgoing edge of
127      /// node
128      ///@param n the node
129      ///@param G the graph
130      OutEdgeIt(const GraphSkeleton & G, Node n) {}
131    };
132
133    /// This iterator goes trough the incoming edges of a node.
134
135    /// This iterator goes trough the \e incoming edges of a certain node
136    /// of a graph.
137    /// Its usage is quite simple, for example you can count the number
138    /// of outgoing edges of a node \c n
139    /// in graph \c G of type \c Graph as follows.
140    /// \code
141    ///int count=0;
142    ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
143    /// \endcode
144
145    class InEdgeIt : public Edge {
146    public:
147      /// @warning The default constructor sets the iterator
148      /// to an undefined value.
149      InEdgeIt() {}
150      /// Initialize the iterator to be invalid
151      InEdgeIt(Invalid) {}
152      InEdgeIt(const GraphSkeleton &, Node) {}   
153    };
154    //  class SymEdgeIt : public Edge {};
155
156    /// This iterator goes through each edge.
157
158    /// This iterator goes through each edge of a graph.
159    /// Its usage is quite simple, for example you can count the number
160    /// of edges in a graph \c G of type \c Graph as follows:
161    /// \code
162    ///int count=0;
163    ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
164    /// \endcode
165    class EdgeIt : public Edge {
166    public:
167      /// @warning The default constructor sets the iterator
168      /// to an undefined value.
169      EdgeIt() {}
170      /// Initialize the iterator to be invalid
171      EdgeIt(Invalid) {}
172      EdgeIt(const GraphSkeleton &) {}
173    };
174
175    /// First node of the graph.
176
177    /// \post \c i and the return value will be the first node.
178    ///
179    NodeIt &first(NodeIt &i) const { return i;}
180
181    /// The first incoming edge.
182    InEdgeIt &first(InEdgeIt &i, Node n) const { return i;}
183    /// The first outgoing edge.
184    OutEdgeIt &first(OutEdgeIt &i, Node n) const { return i;}
185    //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
186    /// The first edge of the Graph.
187    EdgeIt &first(EdgeIt &i) const { return i;}
188
189//     Node getNext(Node) const {}
190//     InEdgeIt getNext(InEdgeIt) const {}
191//     OutEdgeIt getNext(OutEdgeIt) const {}
192//     //SymEdgeIt getNext(SymEdgeIt) const {}
193//     EdgeIt getNext(EdgeIt) const {}
194
195    /// Go to the next node.
196    NodeIt &next(NodeIt &i) const { return i;}
197    /// Go to the next incoming edge.
198    InEdgeIt &next(InEdgeIt &i) const { return i;}
199    /// Go to the next outgoing edge.
200    OutEdgeIt &next(OutEdgeIt &i) const { return i;}
201    //SymEdgeIt &next(SymEdgeIt &) const {}
202    /// Go to the next edge.
203    EdgeIt &next(EdgeIt &i) const { return i;}
204
205    ///Gives back the head node of an edge.
206    Node head(Edge) const { return INVALID; }
207    ///Gives back the tail node of an edge.
208    Node tail(Edge) const { return INVALID; }
209 
210    //   Node aNode(InEdgeIt) const {}
211    //   Node aNode(OutEdgeIt) const {}
212    //   Node aNode(SymEdgeIt) const {}
213
214    //   Node bNode(InEdgeIt) const {}
215    //   Node bNode(OutEdgeIt) const {}
216    //   Node bNode(SymEdgeIt) const {}
217
218    /// Checks if a node iterator is valid
219
220    ///\todo Maybe, it would be better if iterator converted to
221    ///bool directly, as Jacint prefers.
222    bool valid(const Node) const { return true;}
223    /// Checks if an edge iterator is valid
224
225    ///\todo Maybe, it would be better if iterator converted to
226    ///bool directly, as Jacint prefers.
227    bool valid(const Edge) const { return true;}
228
229    ///Gives back the \e id of a node.
230
231    ///\warning Not all graph structures provide this feature.
232    ///
233    int id(const Node) const { return 0;}
234    ///Gives back the \e id of an edge.
235
236    ///\warning Not all graph structures provide this feature.
237    ///
238    int id(const Edge) const { return 0;}
239
240    //void setInvalid(Node &) const {};
241    //void setInvalid(Edge &) const {};
242 
243    ///Add a new node to the graph.
244
245    /// \return the new node.
246    ///
247    Node addNode() { return INVALID;}
248    ///Add a new edge to the graph.
249
250    ///Add a new edge to the graph with tail node \c tail
251    ///and head node \c head.
252    ///\return the new edge.
253    Edge addEdge(Node tail, Node head) { return INVALID;}
254   
255    /// Resets the graph.
256
257    /// This function deletes all edges and nodes of the graph.
258    /// It also frees the memory allocated to store them.
259    void clear() {}
260
261    int nodeNum() const { return 0;}
262    int edgeNum() const { return 0;}
263 
264    /// Defalult constructor.
265    GraphSkeleton() {}
266    ///Copy consructor.
267    GraphSkeleton(const GraphSkeleton &G) {}
268 
269 
270
271    ///Read/write/reference map of the nodes to type \c T.
272
273    ///Read/write/reference map of the nodes to type \c T.
274    /// \sa MemoryMapSkeleton
275    /// \todo We may need copy constructor
276    /// \todo We may need conversion from other nodetype
277    /// \todo We may need operator=
278    /// \warning Making maps that can handle bool type (NodeMap<bool>)
279    /// needs extra attention!
280
281    template<class T> class NodeMap
282    {
283    public:
284      typedef T ValueType;
285      typedef Node KeyType;
286
287      NodeMap(const GraphSkeleton &G) {}
288      NodeMap(const GraphSkeleton &G, T t) {}
289
290      template<typename TT> NodeMap(const NodeMap<TT> &m) {}
291
292      /// Sets the value of a node.
293
294      /// Sets the value associated with node \c i to the value \c t.
295      ///
296      void set(Node i, T t) {}
297      /// Gets the value of a node.
298      T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary
299      T &operator[](Node i) {return *(T*)0;}
300      const T &operator[](Node i) const {return *(T*)0;}
301
302      /// Updates the map if the graph has been changed
303
304      /// \todo Do we need this?
305      ///
306      void update() {}
307      void update(T a) {}   //FIXME: Is it necessary
308    };
309
310    ///Read/write/reference map of the edges to type \c T.
311
312    ///Read/write/reference map of the edges to type \c T.
313    ///It behaves exactly in the same way as \ref NodeMap.
314    /// \sa NodeMap
315    /// \sa MemoryMapSkeleton
316    /// \todo We may need copy constructor
317    /// \todo We may need conversion from other edgetype
318    /// \todo We may need operator=
319    template<class T> class EdgeMap
320    {
321    public:
322      typedef T ValueType;
323      typedef Edge KeyType;
324
325      EdgeMap(const GraphSkeleton &G) {}
326      EdgeMap(const GraphSkeleton &G, T t) {}
327   
328      void set(Edge i, T t) {}
329      T get(Edge i) const {return *(T*)0;}
330      T &operator[](Edge i) {return *(T*)0;}
331   
332      void update() {}
333      void update(T a) {}   //FIXME: Is it necessary
334    };
335  };
336
337  /// An empty eraseable graph class.
338 
339  /// This class provides all the common features of an \e eraseable graph
340  /// structure,
341  /// however completely without implementations and real data structures
342  /// behind the interface.
343  /// All graph algorithms should compile with this class, but it will not
344  /// run properly, of course.
345  ///
346  /// \todo This blabla could be replaced by a sepatate description about
347  /// Skeletons.
348  ///
349  /// It can be used for checking the interface compatibility,
350  /// or it can serve as a skeleton of a new graph structure.
351  ///
352  /// Also, you will find here the full documentation of a certain graph
353  /// feature, the documentation of a real graph imlementation
354  /// like @ref ListGraph or
355  /// @ref SmartGraph will just refer to this structure.
356  class EraseableGraphSkeleton : public GraphSkeleton
357  {
358  public:
359    /// Deletes a node.
360    void erase(Node n) {}
361    /// Deletes an edge.
362    void erase(Edge e) {}
363
364    /// Defalult constructor.
365    GraphSkeleton() {}
366    ///Copy consructor.
367    GraphSkeleton(const GraphSkeleton &G) {}
368  };
369
370 
371  // @}
372
373} //namespace hugo
374
375
376
377// class EmptyBipGraph : public Graph Skeleton
378// {
379//   class ANode {};
380//   class BNode {};
381
382//   ANode &next(ANode &) {}
383//   BNode &next(BNode &) {}
384
385//   ANode &getFirst(ANode &) const {}
386//   BNode &getFirst(BNode &) const {}
387
388//   enum NodeClass { A = 0, B = 1 };
389//   NodeClass getClass(Node n) {}
390
391// }
392
393#endif // HUGO_EMPTYGRAPH_H
Note: See TracBrowser for help on using the repository browser.