1 | /* -*- C++ -*- |
---|
2 | * src/lemon/bezier.h - Part of LEMON, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef LEMON_BEZIER_H |
---|
18 | #define LEMON_BEZIER_H |
---|
19 | |
---|
20 | ///\ingroup misc |
---|
21 | ///\file |
---|
22 | ///\brief Classes to compute with Bezier curves. |
---|
23 | /// |
---|
24 | ///Up to now this file is used internally by \ref graph_to_eps.h |
---|
25 | /// |
---|
26 | ///\author Alpar Juttner |
---|
27 | |
---|
28 | #include<lemon/xy.h> |
---|
29 | |
---|
30 | namespace lemon { |
---|
31 | |
---|
32 | class BezierBase { |
---|
33 | public: |
---|
34 | typedef xy<double> xy; |
---|
35 | protected: |
---|
36 | static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;} |
---|
37 | }; |
---|
38 | |
---|
39 | class Bezier1 : public BezierBase |
---|
40 | { |
---|
41 | public: |
---|
42 | xy p1,p2; |
---|
43 | |
---|
44 | Bezier1() {} |
---|
45 | Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {} |
---|
46 | |
---|
47 | xy operator()(double t) const |
---|
48 | { |
---|
49 | // return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
---|
50 | return conv(p1,p2,t); |
---|
51 | } |
---|
52 | Bezier1 before(double t) const |
---|
53 | { |
---|
54 | return Bezier1(p1,conv(p1,p2,t)); |
---|
55 | } |
---|
56 | |
---|
57 | Bezier1 after(double t) const |
---|
58 | { |
---|
59 | return Bezier1(conv(p1,p2,t),p2); |
---|
60 | } |
---|
61 | Bezier1 revert() { return Bezier1(p2,p1);} |
---|
62 | Bezier1 operator()(double a,double b) { return before(b).after(a/b); } |
---|
63 | xy grad() { return p2-p1; } |
---|
64 | xy grad(double t) { return grad(); } |
---|
65 | |
---|
66 | }; |
---|
67 | |
---|
68 | class Bezier2 : public BezierBase |
---|
69 | { |
---|
70 | public: |
---|
71 | xy p1,p2,p3; |
---|
72 | |
---|
73 | Bezier2() {} |
---|
74 | Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {} |
---|
75 | Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {} |
---|
76 | xy operator()(double t) const |
---|
77 | { |
---|
78 | // return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
---|
79 | return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3; |
---|
80 | } |
---|
81 | Bezier2 before(double t) const |
---|
82 | { |
---|
83 | xy q(conv(p1,p2,t)); |
---|
84 | xy r(conv(p2,p3,t)); |
---|
85 | return Bezier2(p1,q,conv(q,r,t)); |
---|
86 | } |
---|
87 | |
---|
88 | Bezier2 after(double t) const |
---|
89 | { |
---|
90 | xy q(conv(p1,p2,t)); |
---|
91 | xy r(conv(p2,p3,t)); |
---|
92 | return Bezier2(conv(q,r,t),r,p3); |
---|
93 | } |
---|
94 | Bezier2 revert() { return Bezier2(p3,p2,p1);} |
---|
95 | Bezier2 operator()(double a,double b) { return before(b).after(a/b); } |
---|
96 | Bezier1 grad() { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); } |
---|
97 | xy grad(double t) { return grad()(t); } |
---|
98 | }; |
---|
99 | |
---|
100 | class Bezier3 : public BezierBase |
---|
101 | { |
---|
102 | public: |
---|
103 | xy p1,p2,p3,p4; |
---|
104 | |
---|
105 | Bezier3() {} |
---|
106 | Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {} |
---|
107 | Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), |
---|
108 | p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {} |
---|
109 | Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)), |
---|
110 | p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {} |
---|
111 | |
---|
112 | xy operator()(double t) const |
---|
113 | { |
---|
114 | // return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t); |
---|
115 | return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+ |
---|
116 | (3*t*t*(1-t))*p3+(t*t*t)*p4; |
---|
117 | } |
---|
118 | Bezier3 before(double t) const |
---|
119 | { |
---|
120 | xy p(conv(p1,p2,t)); |
---|
121 | xy q(conv(p2,p3,t)); |
---|
122 | xy r(conv(p3,p4,t)); |
---|
123 | xy a(conv(p,q,t)); |
---|
124 | xy b(conv(q,r,t)); |
---|
125 | xy c(conv(a,b,t)); |
---|
126 | return Bezier3(p1,p,a,c); |
---|
127 | } |
---|
128 | |
---|
129 | Bezier3 after(double t) const |
---|
130 | { |
---|
131 | xy p(conv(p1,p2,t)); |
---|
132 | xy q(conv(p2,p3,t)); |
---|
133 | xy r(conv(p3,p4,t)); |
---|
134 | xy a(conv(p,q,t)); |
---|
135 | xy b(conv(q,r,t)); |
---|
136 | xy c(conv(a,b,t)); |
---|
137 | return Bezier3(c,b,r,p4); |
---|
138 | } |
---|
139 | Bezier3 revert() { return Bezier3(p4,p3,p2,p1);} |
---|
140 | Bezier3 operator()(double a,double b) { return before(b).after(a/b); } |
---|
141 | Bezier2 grad() { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); } |
---|
142 | xy grad(double t) { return grad()(t); } |
---|
143 | }; |
---|
144 | |
---|
145 | } //END OF NAMESPACE LEMON |
---|
146 | |
---|
147 | #endif // LEMON_BEZIER_H |
---|