COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/lemon/dijkstra.h @ 1132:ab5c81fcc31a

Last change on this file since 1132:ab5c81fcc31a was 1132:ab5c81fcc31a, checked in by Alpar Juttner, 19 years ago

Revised dijkstra.h with several new features added.

File size: 28.3 KB
RevLine 
[906]1/* -*- C++ -*-
[921]2 * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
[906]3 *
4 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Combinatorial Optimization Research Group, EGRES).
6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
[921]17#ifndef LEMON_DIJKSTRA_H
18#define LEMON_DIJKSTRA_H
[255]19
[758]20///\ingroup flowalgs
[255]21///\file
22///\brief Dijkstra algorithm.
23
[953]24#include <lemon/list_graph.h>
[921]25#include <lemon/bin_heap.h>
26#include <lemon/invalid.h>
[1119]27#include <lemon/error.h>
28#include <lemon/maps.h>
[255]29
[921]30namespace lemon {
[385]31
[1119]32
[758]33/// \addtogroup flowalgs
[430]34/// @{
35
[954]36  ///Default traits class of Dijkstra class.
37
38  ///Default traits class of Dijkstra class.
39  ///\param GR Graph type.
40  ///\param LM Type of length map.
[953]41  template<class GR, class LM>
42  struct DijkstraDefaultTraits
43  {
[954]44    ///The graph type the algorithm runs on.
[953]45    typedef GR Graph;
46    ///The type of the map that stores the edge lengths.
47
[1124]48    ///The type of the map that stores the edge lengths.
[967]49    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
[953]50    typedef LM LengthMap;
[954]51    //The type of the length of the edges.
[987]52    typedef typename LM::Value Value;
[954]53    ///The heap type used by Dijkstra algorithm.
[967]54
55    ///The heap type used by Dijkstra algorithm.
56    ///
57    ///\sa BinHeap
58    ///\sa Dijkstra
[953]59    typedef BinHeap<typename Graph::Node,
[987]60                    typename LM::Value,
[953]61                    typename GR::template NodeMap<int>,
[987]62                    std::less<Value> > Heap;
[953]63
64    ///\brief The type of the map that stores the last
65    ///edges of the shortest paths.
66    ///
[1124]67    ///The type of the map that stores the last
68    ///edges of the shortest paths.
[967]69    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]70    ///
[954]71    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
72    ///Instantiates a PredMap.
[953]73 
[1123]74    ///This function instantiates a \ref PredMap.
75    ///\param G is the graph, to which we would like to define the PredMap.
[1119]76    ///\todo The graph alone may be insufficient for the initialization
[954]77    static PredMap *createPredMap(const GR &G)
[953]78    {
79      return new PredMap(G);
80    }
81    ///\brief The type of the map that stores the last but one
82    ///nodes of the shortest paths.
83    ///
[1124]84    ///The type of the map that stores the last but one
85    ///nodes of the shortest paths.
[967]86    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]87    ///
[1130]88    typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
[954]89    ///Instantiates a PredNodeMap.
[1125]90   
[1123]91    ///This function instantiates a \ref PredNodeMap.
92    ///\param G is the graph, to which we would like to define the \ref PredNodeMap
[954]93    static PredNodeMap *createPredNodeMap(const GR &G)
[953]94    {
[1130]95      return new PredNodeMap();
[953]96    }
[1119]97
98    ///The type of the map that stores whether a nodes is reached.
99 
[1124]100    ///The type of the map that stores whether a nodes is reached.
[1119]101    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
102    ///By default it is a NullMap.
103    ///\todo If it is set to a real map, Dijkstra::reached() should read this.
104    ///\todo named parameter to set this type, function to read and write.
105    typedef NullMap<typename Graph::Node,bool> ReachedMap;
106    ///Instantiates a ReachedMap.
107 
[1123]108    ///This function instantiates a \ref ReachedMap.
109    ///\param G is the graph, to which we would like to define the \ref ReachedMap
[1119]110    static ReachedMap *createReachedMap(const GR &G)
111    {
112      return new ReachedMap();
113    }
[953]114    ///The type of the map that stores the dists of the nodes.
115 
[1124]116    ///The type of the map that stores the dists of the nodes.
[967]117    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]118    ///
[987]119    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
[954]120    ///Instantiates a DistMap.
[953]121 
[1123]122    ///This function instantiates a \ref DistMap.
123    ///\param G is the graph, to which we would like to define the \ref DistMap
[954]124    static DistMap *createDistMap(const GR &G)
[953]125    {
126      return new DistMap(G);
127    }
128  };
129 
[255]130  ///%Dijkstra algorithm class.
[1125]131 
[255]132  ///This class provides an efficient implementation of %Dijkstra algorithm.
133  ///The edge lengths are passed to the algorithm using a
[959]134  ///\ref concept::ReadMap "ReadMap",
[255]135  ///so it is easy to change it to any kind of length.
136  ///
[880]137  ///The type of the length is determined by the
[987]138  ///\ref concept::ReadMap::Value "Value" of the length map.
[255]139  ///
140  ///It is also possible to change the underlying priority heap.
141  ///
[953]142  ///\param GR The graph type the algorithm runs on. The default value is
[955]143  ///\ref ListGraph. The value of GR is not used directly by Dijkstra, it
[954]144  ///is only passed to \ref DijkstraDefaultTraits.
[584]145  ///\param LM This read-only
[385]146  ///EdgeMap
147  ///determines the
148  ///lengths of the edges. It is read once for each edge, so the map
149  ///may involve in relatively time consuming process to compute the edge
150  ///length if it is necessary. The default map type is
[959]151  ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".
[955]152  ///The value of LM is not used directly by Dijkstra, it
[954]153  ///is only passed to \ref DijkstraDefaultTraits.
154  ///\param TR Traits class to set various data types used by the algorithm.
155  ///The default traits class is
[955]156  ///\ref DijkstraDefaultTraits "DijkstraDefaultTraits<GR,LM>".
[954]157  ///See \ref DijkstraDefaultTraits for the documentation of
158  ///a Dijkstra traits class.
[456]159  ///
[689]160  ///\author Jacint Szabo and Alpar Juttner
[1128]161  ///\todo A compare object would be nice.
[584]162
[255]163#ifdef DOXYGEN
[584]164  template <typename GR,
165            typename LM,
[953]166            typename TR>
[255]167#else
[953]168  template <typename GR=ListGraph,
[584]169            typename LM=typename GR::template EdgeMap<int>,
[953]170            typename TR=DijkstraDefaultTraits<GR,LM> >
[255]171#endif
[1116]172  class Dijkstra {
[255]173  public:
[1125]174    /**
175     * \brief \ref Exception for uninitialized parameters.
176     *
177     * This error represents problems in the initialization
178     * of the parameters of the algorithms.
179     */
180    class UninitializedParameter : public lemon::UninitializedParameter {
181    public:
182      virtual const char* exceptionName() const {
183        return "lemon::Dijsktra::UninitializedParameter";
184      }
185    };
[1119]186
[953]187    typedef TR Traits;
[584]188    ///The type of the underlying graph.
[954]189    typedef typename TR::Graph Graph;
[911]190    ///\e
[255]191    typedef typename Graph::Node Node;
[911]192    ///\e
[255]193    typedef typename Graph::NodeIt NodeIt;
[911]194    ///\e
[255]195    typedef typename Graph::Edge Edge;
[911]196    ///\e
[255]197    typedef typename Graph::OutEdgeIt OutEdgeIt;
198   
[584]199    ///The type of the length of the edges.
[987]200    typedef typename TR::LengthMap::Value Value;
[693]201    ///The type of the map that stores the edge lengths.
[954]202    typedef typename TR::LengthMap LengthMap;
[693]203    ///\brief The type of the map that stores the last
[584]204    ///edges of the shortest paths.
[953]205    typedef typename TR::PredMap PredMap;
[693]206    ///\brief The type of the map that stores the last but one
[584]207    ///nodes of the shortest paths.
[953]208    typedef typename TR::PredNodeMap PredNodeMap;
[1119]209    ///The type of the map indicating if a node is reached.
210    typedef typename TR::ReachedMap ReachedMap;
[693]211    ///The type of the map that stores the dists of the nodes.
[953]212    typedef typename TR::DistMap DistMap;
213    ///The heap type used by the dijkstra algorithm.
214    typedef typename TR::Heap Heap;
[255]215  private:
[802]216    /// Pointer to the underlying graph.
[688]217    const Graph *G;
[802]218    /// Pointer to the length map
[954]219    const LengthMap *length;
[802]220    ///Pointer to the map of predecessors edges.
[1119]221    PredMap *_pred;
222    ///Indicates if \ref _pred is locally allocated (\c true) or not.
223    bool local_pred;
[802]224    ///Pointer to the map of predecessors nodes.
[1130]225    PredNodeMap *_predNode;
226    ///Indicates if \ref _predNode is locally allocated (\c true) or not.
227    bool local_predNode;
[802]228    ///Pointer to the map of distances.
[1130]229    DistMap *_dist;
230    ///Indicates if \ref _dist is locally allocated (\c true) or not.
231    bool local_dist;
[1119]232    ///Pointer to the map of reached status of the nodes.
233    ReachedMap *_reached;
234    ///Indicates if \ref _reached is locally allocated (\c true) or not.
235    bool local_reached;
[688]236
[802]237    ///The source node of the last execution.
[774]238    Node source;
239
[1128]240    ///Creates the maps if necessary.
[688]241   
[694]242    ///\todo Error if \c G or are \c NULL. What about \c length?
[688]243    ///\todo Better memory allocation (instead of new).
[1128]244    void create_maps()
[688]245    {
[1119]246      if(!_pred) {
247        local_pred = true;
248        _pred = Traits::createPredMap(*G);
[688]249      }
[1130]250      if(!_predNode) {
251        local_predNode = true;
252        _predNode = Traits::createPredNodeMap(*G);
[688]253      }
[1130]254      if(!_dist) {
255        local_dist = true;
256        _dist = Traits::createDistMap(*G);
[688]257      }
[1119]258      if(!_reached) {
259        local_reached = true;
260        _reached = Traits::createReachedMap(*G);
261      }
[688]262    }
[255]263   
264  public :
[1116]265 
[1128]266    ///\name Named template parameters
267
268    ///@{
269
[953]270    template <class T>
[1116]271    struct DefPredMapTraits : public Traits {
[953]272      typedef T PredMap;
273      static PredMap *createPredMap(const Graph &G)
274      {
[1126]275        throw UninitializedParameter();
[953]276      }
277    };
[954]278    ///\ref named-templ-param "Named parameter" for setting PredMap type
279
280    ///\ref named-templ-param "Named parameter" for setting PredMap type
[1043]281    ///
[953]282    template <class T>
[1116]283    class DefPredMap : public Dijkstra< Graph,
[953]284                                        LengthMap,
[1116]285                                        DefPredMapTraits<T> > { };
[953]286   
287    template <class T>
[1116]288    struct DefPredNodeMapTraits : public Traits {
[953]289      typedef T PredNodeMap;
290      static PredNodeMap *createPredNodeMap(const Graph &G)
291      {
[1126]292        throw UninitializedParameter();
[953]293      }
294    };
[954]295    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
296
297    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
[1043]298    ///
[953]299    template <class T>
[1116]300    class DefPredNodeMap : public Dijkstra< Graph,
[953]301                                            LengthMap,
[1116]302                                            DefPredNodeMapTraits<T> > { };
[953]303   
304    template <class T>
[1116]305    struct DefDistMapTraits : public Traits {
[953]306      typedef T DistMap;
307      static DistMap *createDistMap(const Graph &G)
308      {
[1126]309        throw UninitializedParameter();
[953]310      }
311    };
[954]312    ///\ref named-templ-param "Named parameter" for setting DistMap type
313
314    ///\ref named-templ-param "Named parameter" for setting DistMap type
[1043]315    ///
[953]316    template <class T>
[1116]317    class DefDistMap : public Dijkstra< Graph,
[953]318                                        LengthMap,
[1116]319                                        DefDistMapTraits<T> > { };
[953]320   
[1128]321    template <class T>
322    struct DefReachedMapTraits : public Traits {
323      typedef T ReachedMap;
324      static ReachedMap *createReachedMap(const Graph &G)
325      {
326        throw UninitializedParameter();
327      }
328    };
329    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
330
331    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
332    ///
333    template <class T>
334    class DefReachedMap : public Dijkstra< Graph,
335                                        LengthMap,
336                                        DefReachedMapTraits<T> > { };
337   
338    struct DefGraphReachedMapTraits : public Traits {
339      typedef typename Graph::NodeMap<bool> ReachedMap;
340      static ReachedMap *createReachedMap(const Graph &G)
341      {
342        return new ReachedMap(G);
343      }
344    };
345    ///\brief \ref named-templ-param "Named parameter"
346    ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
347    ///
348    ///\ref named-templ-param "Named parameter"
349    ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
350    ///If you don't set it explicitely, it will be automatically allocated.
351    template <class T>
352    class DefReachedMapToBeDefaultMap :
353      public Dijkstra< Graph,
354                       LengthMap,
355                       DefGraphReachedMapTraits> { };
356   
357    ///@}
358
359
360  private:
361    typename Graph::template NodeMap<int> _heap_map;
362    Heap _heap;
363  public:     
364   
[802]365    ///Constructor.
[255]366   
[802]367    ///\param _G the graph the algorithm will run on.
368    ///\param _length the length map used by the algorithm.
[954]369    Dijkstra(const Graph& _G, const LengthMap& _length) :
[688]370      G(&_G), length(&_length),
[1119]371      _pred(NULL), local_pred(false),
[1130]372      _predNode(NULL), local_predNode(false),
373      _dist(NULL), local_dist(false),
[1128]374      _reached(NULL), local_reached(false),
375      _heap_map(*G,-1),_heap(_heap_map)
[688]376    { }
377   
[802]378    ///Destructor.
[688]379    ~Dijkstra()
380    {
[1119]381      if(local_pred) delete _pred;
[1130]382      if(local_predNode) delete _predNode;
383      if(local_dist) delete _dist;
[1119]384      if(local_reached) delete _reached;
[688]385    }
386
387    ///Sets the length map.
388
389    ///Sets the length map.
390    ///\return <tt> (*this) </tt>
[1116]391    Dijkstra &lengthMap(const LengthMap &m)
[688]392    {
393      length = &m;
394      return *this;
395    }
396
397    ///Sets the map storing the predecessor edges.
398
399    ///Sets the map storing the predecessor edges.
400    ///If you don't use this function before calling \ref run(),
401    ///it will allocate one. The destuctor deallocates this
402    ///automatically allocated map, of course.
403    ///\return <tt> (*this) </tt>
[1116]404    Dijkstra &predMap(PredMap &m)
[688]405    {
[1119]406      if(local_pred) {
407        delete _pred;
408        local_pred=false;
[688]409      }
[1119]410      _pred = &m;
[688]411      return *this;
412    }
413
414    ///Sets the map storing the predecessor nodes.
415
416    ///Sets the map storing the predecessor nodes.
417    ///If you don't use this function before calling \ref run(),
418    ///it will allocate one. The destuctor deallocates this
419    ///automatically allocated map, of course.
420    ///\return <tt> (*this) </tt>
[1116]421    Dijkstra &predNodeMap(PredNodeMap &m)
[688]422    {
[1130]423      if(local_predNode) {
424        delete _predNode;
425        local_predNode=false;
[688]426      }
[1130]427      _predNode = &m;
[688]428      return *this;
429    }
430
431    ///Sets the map storing the distances calculated by the algorithm.
432
433    ///Sets the map storing the distances calculated by the algorithm.
434    ///If you don't use this function before calling \ref run(),
435    ///it will allocate one. The destuctor deallocates this
436    ///automatically allocated map, of course.
437    ///\return <tt> (*this) </tt>
[1116]438    Dijkstra &distMap(DistMap &m)
[688]439    {
[1130]440      if(local_dist) {
441        delete _dist;
442        local_dist=false;
[688]443      }
[1130]444      _dist = &m;
[688]445      return *this;
446    }
[694]447
[1130]448  private:
449    void finalizeNodeData(Node v,Value dst)
450    {
451      _reached->set(v,true);
452      _dist->set(v, dst);
453      _predNode->set(v,G->source((*_pred)[v]));
454    }
455
456  public:
[1128]457    ///\name Excetution control
458    ///The simplest way to execute the algorithm is to use
459    ///\ref run().
460    ///\n
461    ///It you need more control on the execution,
462    ///first you must call \ref init(), then you can add several source nodes
463    ///with \ref addSource(). Finally \ref start() will perform the actual path
464    ///computation.
465
466    ///@{
467
468    ///Initializes the internal data structures.
469
470    ///Initializes the internal data structures.
471    ///
472    ///\todo _heap_map's type could also be in the traits class.
473    void init()
474    {
475      create_maps();
[774]476     
477      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
[1119]478        _pred->set(u,INVALID);
[1130]479        _predNode->set(u,INVALID);
[1119]480        ///\todo *_reached is not set to false.
[1128]481        _heap_map.set(u,Heap::PRE_HEAP);
[694]482      }
[1128]483    }
484   
485    ///Adds a new source node.
486
487    ///Adds a new source node the the priority heap.
488    ///It checks if the node has already been added to the heap.
489    ///
490    ///The optional second parameter is the initial distance of the node.
491    ///
492    ///\todo Do we really want to check it?
493    void addSource(Node s,Value dst=0)
494    {
495      source = s;
496      if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
497    }
498   
499    void processNode()
500    {
501      Node v=_heap.top();
502      Value oldvalue=_heap[v];
503      _heap.pop();
[1130]504      finalizeNodeData(v,oldvalue);
[694]505     
[1128]506      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
507        Node w=G->target(e);
508        switch(_heap.state(w)) {
509        case Heap::PRE_HEAP:
510          _heap.push(w,oldvalue+(*length)[e]);
511          _pred->set(w,e);
[1130]512//        _predNode->set(w,v);
[1128]513          break;
514        case Heap::IN_HEAP:
515          if ( oldvalue+(*length)[e] < _heap[w] ) {
516            _heap.decrease(w, oldvalue+(*length)[e]);
[1119]517            _pred->set(w,e);
[1130]518//          _predNode->set(w,v);
[694]519          }
[1128]520          break;
521        case Heap::POST_HEAP:
522          break;
[694]523        }
524      }
525    }
[1128]526
[1130]527    ///Executes the algorithm.
[1128]528
[1130]529    ///Executes the algorithm.
[1128]530    ///
[1130]531    ///\pre init() must be called and at least one node should be added
532    ///with addSource() before using this function.
[1128]533    ///
534    ///This method runs the %Dijkstra algorithm from the root node(s)
535    ///in order to
536    ///compute the
537    ///shortest path to each node. The algorithm computes
538    ///- The shortest path tree.
539    ///- The distance of each node from the root(s).
540    ///
541    void start()
542    {
543      while ( !_heap.empty() ) processNode();
544    }
[255]545   
[1130]546    ///Executes the algorithm until \c dest is reached.
[1128]547
[1130]548    ///Executes the algorithm until \c dest is reached.
[1128]549    ///
[1130]550    ///\pre init() must be called and at least one node should be added
551    ///with addSource() before using this function.
[1128]552    ///
553    ///This method runs the %Dijkstra algorithm from the root node(s)
554    ///in order to
555    ///compute the
556    ///shortest path to \c dest. The algorithm computes
557    ///- The shortest path to \c  dest.
558    ///- The distance of \c dest from the root(s).
559    ///
560    void start(Node dest)
561    {
[1130]562      while ( !_heap.empty() && _heap.top()!=dest ) processNode();
563      if ( _heap.top()==dest ) finalizeNodeData(_heap.top());
564    }
565   
566    ///Executes the algorithm until a condition is met.
567
568    ///Executes the algorithm until a condition is met.
569    ///
570    ///\pre init() must be called and at least one node should be added
571    ///with addSource() before using this function.
572    ///
573    ///\param nm must be a bool (or convertible) node map. The algorithm
574    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
575    template<class NM>
576    void start(const NM &nm)
577    {
578      while ( !_heap.empty() && !mn[_heap.top()] ) processNode();
579      if ( !_heap.empty() ) finalizeNodeData(_heap.top());
[1128]580    }
581   
582    ///Runs %Dijkstra algorithm from node \c s.
583   
584    ///This method runs the %Dijkstra algorithm from a root node \c s
585    ///in order to
586    ///compute the
587    ///shortest path to each node. The algorithm computes
588    ///- The shortest path tree.
589    ///- The distance of each node from the root.
590    ///
591    ///\note d.run(s) is just a shortcut of the following code.
592    ///\code
593    ///  d.init();
594    ///  d.addSource(s);
595    ///  d.start();
596    ///\endcode
597    void run(Node s) {
598      init();
599      addSource(s);
600      start();
601    }
602   
[1130]603    ///Finds the shortest path between \c s and \c t.
604   
605    ///Finds the shortest path between \c s and \c t.
606    ///
607    ///\return The length of the shortest s---t path if there exists one,
608    ///0 otherwise.
609    ///\note Apart from the return value, d.run(s) is
610    ///just a shortcut of the following code.
611    ///\code
612    ///  d.init();
613    ///  d.addSource(s);
614    ///  d.start(t);
615    ///\endcode
616    Value run(Node s,Node t) {
617      init();
618      addSource(s);
619      start(t);
620      return (*_pred)[t]==INVALID?0:(*_dist)[t];
621    }
622   
[1128]623    ///@}
624
625    ///\name Query Functions
626    ///The result of the %Dijkstra algorithm can be obtained using these
627    ///functions.\n
628    ///Before the use of these functions,
629    ///either run() or start() must be called.
630   
631    ///@{
632
[385]633    ///The distance of a node from the root.
[255]634
[385]635    ///Returns the distance of a node from the root.
[255]636    ///\pre \ref run() must be called before using this function.
[385]637    ///\warning If node \c v in unreachable from the root the return value
[255]638    ///of this funcion is undefined.
[1130]639    Value dist(Node v) const { return (*_dist)[v]; }
[373]640
[584]641    ///Returns the 'previous edge' of the shortest path tree.
[255]642
[584]643    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
[785]644    ///i.e. it returns the last edge of a shortest path from the root to \c
[688]645    ///v. It is \ref INVALID
646    ///if \c v is unreachable from the root or if \c v=s. The
[385]647    ///shortest path tree used here is equal to the shortest path tree used in
648    ///\ref predNode(Node v).  \pre \ref run() must be called before using
649    ///this function.
[780]650    ///\todo predEdge could be a better name.
[1119]651    Edge pred(Node v) const { return (*_pred)[v]; }
[373]652
[584]653    ///Returns the 'previous node' of the shortest path tree.
[255]654
[584]655    ///For a node \c v it returns the 'previous node' of the shortest path tree,
[385]656    ///i.e. it returns the last but one node from a shortest path from the
657    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
658    ///\c v=s. The shortest path tree used here is equal to the shortest path
659    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
660    ///using this function.
[1130]661    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
662                                  G->source((*_pred)[v]); }
[255]663   
664    ///Returns a reference to the NodeMap of distances.
665
[385]666    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
667    ///be called before using this function.
[1130]668    const DistMap &distMap() const { return *_dist;}
[385]669 
[255]670    ///Returns a reference to the shortest path tree map.
671
672    ///Returns a reference to the NodeMap of the edges of the
673    ///shortest path tree.
674    ///\pre \ref run() must be called before using this function.
[1119]675    const PredMap &predMap() const { return *_pred;}
[385]676 
677    ///Returns a reference to the map of nodes of shortest paths.
[255]678
679    ///Returns a reference to the NodeMap of the last but one nodes of the
[385]680    ///shortest path tree.
[255]681    ///\pre \ref run() must be called before using this function.
[1130]682    const PredNodeMap &predNodeMap() const { return *_predNode;}
[255]683
[385]684    ///Checks if a node is reachable from the root.
[255]685
[385]686    ///Returns \c true if \c v is reachable from the root.
[1128]687    ///\warning If the algorithm is started from multiple nodes,
688    ///this function may give false result for the source nodes.
[255]689    ///\pre \ref run() must be called before using this function.
[385]690    ///
[1119]691    bool reached(Node v) { return v==source || (*_pred)[v]!=INVALID; }
[255]692   
[1128]693    ///@}
[255]694  };
[953]695
[1123]696  /// Default traits used by \ref DijkstraWizard
697
[1124]698  /// To make it easier to use Dijkstra algorithm we have created a wizard class.
699  /// This \ref DijkstraWizard class needs default traits, as well as the \ref Dijkstra class.
[1123]700  /// The \ref DijkstraWizardBase is a class to be the default traits of the
701  /// \ref DijkstraWizard class.
[1116]702  template<class GR,class LM>
703  class DijkstraWizardBase : public DijkstraDefaultTraits<GR,LM>
704  {
705
706    typedef DijkstraDefaultTraits<GR,LM> Base;
707  protected:
708    /// Pointer to the underlying graph.
709    void *_g;
710    /// Pointer to the length map
711    void *_length;
712    ///Pointer to the map of predecessors edges.
713    void *_pred;
714    ///Pointer to the map of predecessors nodes.
715    void *_predNode;
716    ///Pointer to the map of distances.
717    void *_dist;
718    ///Pointer to the source node.
719    void *_source;
720
[1123]721    /// Type of the nodes in the graph.
[1116]722    typedef typename Base::Graph::Node Node;
723
724    public:
[1123]725    /// Constructor.
726   
727    /// This constructor does not require parameters, therefore it initiates
728    /// all of the attributes to default values (0, INVALID).
[1116]729    DijkstraWizardBase() : _g(0), _length(0), _pred(0), _predNode(0),
730                       _dist(0), _source(INVALID) {}
731
[1123]732    /// Constructor.
733   
734    /// This constructor requires some parameters, listed in the parameters list.
735    /// Others are initiated to 0.
736    /// \param g is the initial value of  \ref _g
737    /// \param l is the initial value of  \ref _length
738    /// \param s is the initial value of  \ref _source
[1116]739    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
740      _g((void *)&g), _length((void *)&l), _pred(0), _predNode(0),
741                  _dist(0), _source((void *)&s) {}
742
743  };
744 
[1123]745  /// A class to make easier the usage of Dijkstra algorithm
[953]746
[1123]747  /// This class is created to make it easier to use Dijkstra algorithm.
748  /// It uses the functions and features of the plain \ref Dijkstra,
749  /// but it is much more simple to use it.
[953]750  ///
[1123]751  /// Simplicity means that the way to change the types defined
752  /// in the traits class is based on functions that returns the new class
[1124]753  /// and not on templatable built-in classes. When using the plain \ref Dijkstra
754  /// the new class with the modified type comes from the original class by using the ::
755  /// operator. In the case of \ref DijkstraWizard only a function have to be called and it will
[1123]756  /// return the needed class.
757  ///
758  /// It does not have own \ref run method. When its \ref run method is called
759  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
760  /// method of it.
[953]761  template<class TR>
[1116]762  class DijkstraWizard : public TR
[953]763  {
[1116]764    typedef TR Base;
[953]765
[1123]766    ///The type of the underlying graph.
[953]767    typedef typename TR::Graph Graph;
[1119]768    //\e
[953]769    typedef typename Graph::Node Node;
[1119]770    //\e
[953]771    typedef typename Graph::NodeIt NodeIt;
[1119]772    //\e
[953]773    typedef typename Graph::Edge Edge;
[1119]774    //\e
[953]775    typedef typename Graph::OutEdgeIt OutEdgeIt;
776   
[1123]777    ///The type of the map that stores the edge lengths.
[953]778    typedef typename TR::LengthMap LengthMap;
[1123]779    ///The type of the length of the edges.
[987]780    typedef typename LengthMap::Value Value;
[1123]781    ///\brief The type of the map that stores the last
782    ///edges of the shortest paths.
[953]783    typedef typename TR::PredMap PredMap;
[1123]784    ///\brief The type of the map that stores the last but one
785    ///nodes of the shortest paths.
[953]786    typedef typename TR::PredNodeMap PredNodeMap;
[1123]787    ///The type of the map that stores the dists of the nodes.
[953]788    typedef typename TR::DistMap DistMap;
789
[1123]790    ///The heap type used by the dijkstra algorithm.
[953]791    typedef typename TR::Heap Heap;
[1116]792public:
[1123]793    /// Constructor.
[1116]794    DijkstraWizard() : TR() {}
[953]795
[1123]796    /// Constructor that requires parameters.
[1124]797
798    /// Constructor that requires parameters.
[1123]799    /// These parameters will be the default values for the traits class.
[1116]800    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
801      TR(g,l,s) {}
[953]802
[1123]803    ///Copy constructor
[1116]804    DijkstraWizard(const TR &b) : TR(b) {}
[953]805
[1116]806    ~DijkstraWizard() {}
807
[1123]808    ///Runs Dijkstra algorithm from a given node.
809   
810    ///Runs Dijkstra algorithm from a given node.
811    ///The node can be given by the \ref source function.
[1116]812    void run()
[953]813    {
[1126]814      if(_source==0) throw UninitializedParameter();
[1116]815      Dijkstra<Graph,LengthMap,TR> Dij(*(Graph*)_g,*(LengthMap*)_length);
816      if(_pred) Dij.predMap(*(PredMap*)_pred);
817      if(_predNode) Dij.predNodeMap(*(PredNodeMap*)_predNode);
818      if(_dist) Dij.distMap(*(DistMap*)_dist);
819      Dij.run(*(Node*)_source);
820    }
821
[1124]822    ///Runs Dijkstra algorithm from the given node.
[1123]823
[1124]824    ///Runs Dijkstra algorithm from the given node.
[1123]825    ///\param s is the given source.
[1116]826    void run(Node s)
827    {
828      _source=(void *)&s;
829      run();
[953]830    }
831
832    template<class T>
[1116]833    struct DefPredMapBase : public Base {
834      typedef T PredMap;
[1117]835      static PredMap *createPredMap(const Graph &G) { return 0; };
836      DefPredMapBase(const Base &b) : Base(b) {}
[1116]837    };
[953]838   
[1123]839    /// \ref named-templ-param "Named parameter" function for setting PredMap type
840
841    /// \ref named-templ-param "Named parameter" function for setting PredMap type
[1124]842    ///
[953]843    template<class T>
[1116]844    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
[953]845    {
[1116]846      _pred=(void *)&t;
847      return DijkstraWizard<DefPredMapBase<T> >(*this);
[953]848    }
849   
[1116]850
[953]851    template<class T>
[1116]852    struct DefPredNodeMapBase : public Base {
853      typedef T PredNodeMap;
[1117]854      static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
855      DefPredNodeMapBase(const Base &b) : Base(b) {}
[1116]856    };
857   
[1123]858    /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
859
860    /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
[1124]861    ///
[953]862    template<class T>
[1116]863    DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t)
[953]864    {
[1116]865      _predNode=(void *)&t;
866      return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
[953]867    }
[1116]868   
869    template<class T>
870    struct DefDistMapBase : public Base {
871      typedef T DistMap;
[1117]872      static DistMap *createDistMap(const Graph &G) { return 0; };
873      DefDistMapBase(const Base &b) : Base(b) {}
[1116]874    };
[953]875   
[1123]876    /// \ref named-templ-param "Named parameter" function for setting DistMap type
877
878    /// \ref named-templ-param "Named parameter" function for setting DistMap type
[1124]879    ///
[953]880    template<class T>
[1116]881    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
[953]882    {
[1116]883      _dist=(void *)&t;
884      return DijkstraWizard<DefDistMapBase<T> >(*this);
[953]885    }
[1117]886   
[1123]887    /// Sets the source node, from which the Dijkstra algorithm runs.
888
889    /// Sets the source node, from which the Dijkstra algorithm runs.
890    /// \param s is the source node.
[1117]891    DijkstraWizard<TR> &source(Node s)
[953]892    {
[1116]893      source=(void *)&s;
[953]894      return *this;
895    }
896   
897  };
[255]898 
[953]899  ///\e
900
[954]901  ///\todo Please document...
[953]902  ///
903  template<class GR, class LM>
[1116]904  DijkstraWizard<DijkstraWizardBase<GR,LM> >
905  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
[953]906  {
[1116]907    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
[953]908  }
909
[430]910/// @}
[255]911 
[921]912} //END OF NAMESPACE LEMON
[255]913
914#endif
915
Note: See TracBrowser for help on using the repository browser.