COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/lemon/list_graph.h @ 1389:58b298e50c20

Last change on this file since 1389:58b298e50c20 was 1359:1581f961cfaa, checked in by Alpar Juttner, 19 years ago

Correct the english name of EGRES.

File size: 14.4 KB
RevLine 
[948]1/* -*- C++ -*-
2 * src/lemon/list_graph.h - Part of LEMON, a generic C++ optimization library
3 *
[1164]4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[948]6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
[395]16
[921]17#ifndef LEMON_LIST_GRAPH_H
18#define LEMON_LIST_GRAPH_H
[395]19
[948]20///\ingroup graphs
21///\file
[1334]22///\brief ListGraph, SymListGraph classes.
[948]23
[1307]24#include <lemon/bits/erasable_graph_extender.h>
25#include <lemon/bits/clearable_graph_extender.h>
26#include <lemon/bits/extendable_graph_extender.h>
27#include <lemon/bits/iterable_graph_extender.h>
28#include <lemon/bits/alteration_notifier.h>
29#include <lemon/bits/default_map.h>
[395]30
[1307]31#include <lemon/bits/undir_graph_extender.h>
[782]32
[1011]33#include <list>
[782]34
[921]35namespace lemon {
[395]36
[946]37  class ListGraphBase {
[406]38
[949]39  protected:
[946]40    struct NodeT {
[397]41      int first_in,first_out;
42      int prev, next;
[395]43    };
[946]44 
45    struct EdgeT {
[986]46      int target, source;
[397]47      int prev_in, prev_out;
48      int next_in, next_out;
[395]49    };
50
51    std::vector<NodeT> nodes;
[946]52
[397]53    int first_node;
[946]54
[397]55    int first_free_node;
[946]56
[395]57    std::vector<EdgeT> edges;
[946]58
[397]59    int first_free_edge;
[395]60   
[782]61  public:
[395]62   
[946]63    typedef ListGraphBase Graph;
[397]64   
[946]65    class Node {
[975]66      friend class ListGraphBase;
[946]67    protected:
[395]68
[946]69      int id;
70      Node(int pid) { id = pid;}
[395]71
[946]72    public:
73      Node() {}
74      Node (Invalid) { id = -1; }
75      bool operator==(const Node& node) const {return id == node.id;}
76      bool operator!=(const Node& node) const {return id != node.id;}
77      bool operator<(const Node& node) const {return id < node.id;}
78    };
[782]79
[946]80    class Edge {
[975]81      friend class ListGraphBase;
[946]82    protected:
[782]83
[946]84      int id;
85      Edge(int pid) { id = pid;}
[395]86
[946]87    public:
88      Edge() {}
89      Edge (Invalid) { id = -1; }
90      bool operator==(const Edge& edge) const {return id == edge.id;}
91      bool operator!=(const Edge& edge) const {return id != edge.id;}
92      bool operator<(const Edge& edge) const {return id < edge.id;}
93    };
94
95
96
97    ListGraphBase()
[782]98      : nodes(), first_node(-1),
99        first_free_node(-1), edges(), first_free_edge(-1) {}
100
[395]101   
[813]102    /// Maximum node ID.
103   
104    /// Maximum node ID.
105    ///\sa id(Node)
[980]106    int maxId(Node = INVALID) const { return nodes.size()-1; }
[946]107
[813]108    /// Maximum edge ID.
109   
110    /// Maximum edge ID.
111    ///\sa id(Edge)
[980]112    int maxId(Edge = INVALID) const { return edges.size()-1; }
[395]113
[986]114    Node source(Edge e) const { return edges[e.id].source; }
115    Node target(Edge e) const { return edges[e.id].target; }
[395]116
117
[946]118    void first(Node& node) const {
119      node.id = first_node;
120    }
121
122    void next(Node& node) const {
123      node.id = nodes[node.id].next;
124    }
125
126
127    void first(Edge& e) const {
128      int n;
129      for(n = first_node;
130          n!=-1 && nodes[n].first_in == -1;
131          n = nodes[n].next);
132      e.id = (n == -1) ? -1 : nodes[n].first_in;
133    }
134
135    void next(Edge& edge) const {
136      if (edges[edge.id].next_in != -1) {
137        edge.id = edges[edge.id].next_in;
138      } else {
139        int n;
[986]140        for(n = nodes[edges[edge.id].target].next;
[946]141          n!=-1 && nodes[n].first_in == -1;
142          n = nodes[n].next);
143        edge.id = (n == -1) ? -1 : nodes[n].first_in;
144      }     
145    }
146
147    void firstOut(Edge &e, const Node& v) const {
148      e.id = nodes[v.id].first_out;
149    }
150    void nextOut(Edge &e) const {
151      e.id=edges[e.id].next_out;
152    }
153
154    void firstIn(Edge &e, const Node& v) const {
155      e.id = nodes[v.id].first_in;
156    }
157    void nextIn(Edge &e) const {
158      e.id=edges[e.id].next_in;
159    }
160
[813]161   
[946]162    static int id(Node v) { return v.id; }
163    static int id(Edge e) { return e.id; }
[395]164
[1106]165    static Node fromId(int id, Node) { return Node(id);}
166    static Edge fromId(int id, Edge) { return Edge(id);}
167
[397]168    /// Adds a new node to the graph.
169
[813]170    /// \warning It adds the new node to the front of the list.
[397]171    /// (i.e. the lastly added node becomes the first.)
[946]172    Node addNode() {     
[397]173      int n;
174     
[946]175      if(first_free_node==-1) {
176        n = nodes.size();
177        nodes.push_back(NodeT());
178      } else {
[397]179        n = first_free_node;
180        first_free_node = nodes[n].next;
181      }
182     
183      nodes[n].next = first_node;
184      if(first_node != -1) nodes[first_node].prev = n;
185      first_node = n;
186      nodes[n].prev = -1;
187     
188      nodes[n].first_in = nodes[n].first_out = -1;
189     
[946]190      return Node(n);
[395]191    }
192   
193    Edge addEdge(Node u, Node v) {
[946]194      int n;     
195
196      if (first_free_edge == -1) {
197        n = edges.size();
198        edges.push_back(EdgeT());
199      } else {
[397]200        n = first_free_edge;
201        first_free_edge = edges[n].next_in;
202      }
203     
[986]204      edges[n].source = u.id;
205      edges[n].target = v.id;
[395]206
[946]207      edges[n].next_out = nodes[u.id].first_out;
208      if(nodes[u.id].first_out != -1) {
209        edges[nodes[u.id].first_out].prev_out = n;
210      }
211     
212      edges[n].next_in = nodes[v.id].first_in;
213      if(nodes[v.id].first_in != -1) {
214        edges[nodes[v.id].first_in].prev_in = n;
215      }
216     
[397]217      edges[n].prev_in = edges[n].prev_out = -1;
218       
[946]219      nodes[u.id].first_out = nodes[v.id].first_in = n;
[397]220
[946]221      return Edge(n);
[395]222    }
[774]223   
[946]224    void erase(const Node& node) {
225      int n = node.id;
226     
227      if(nodes[n].next != -1) {
228        nodes[nodes[n].next].prev = nodes[n].prev;
229      }
230     
231      if(nodes[n].prev != -1) {
232        nodes[nodes[n].prev].next = nodes[n].next;
233      } else {
234        first_node = nodes[n].next;
235      }
236     
237      nodes[n].next = first_free_node;
238      first_free_node = n;
[395]239
[774]240    }
241   
[946]242    void erase(const Edge& edge) {
243      int n = edge.id;
[397]244     
[946]245      if(edges[n].next_in!=-1) {
[397]246        edges[edges[n].next_in].prev_in = edges[n].prev_in;
[946]247      }
248
249      if(edges[n].prev_in!=-1) {
[397]250        edges[edges[n].prev_in].next_in = edges[n].next_in;
[946]251      } else {
[986]252        nodes[edges[n].target].first_in = edges[n].next_in;
[946]253      }
254
[397]255     
[946]256      if(edges[n].next_out!=-1) {
[397]257        edges[edges[n].next_out].prev_out = edges[n].prev_out;
[946]258      }
259
260      if(edges[n].prev_out!=-1) {
[397]261        edges[edges[n].prev_out].next_out = edges[n].next_out;
[946]262      } else {
[986]263        nodes[edges[n].source].first_out = edges[n].next_out;
[946]264      }
[397]265     
266      edges[n].next_in = first_free_edge;
[695]267      first_free_edge = n;     
[397]268
269    }
270
271    void clear() {
[782]272      edges.clear();
273      nodes.clear();
[946]274      first_node = first_free_node = first_free_edge = -1;
[937]275    }
276
[949]277  protected:
[986]278    void _moveTarget(Edge e, Node n)
[949]279    {
280      if(edges[e.id].next_in != -1)
281        edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
282      if(edges[e.id].prev_in != -1)
283        edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
[986]284      else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
285      edges[e.id].target = n.id;
[949]286      edges[e.id].prev_in = -1;
287      edges[e.id].next_in = nodes[n.id].first_in;
288      nodes[n.id].first_in = e.id;
289    }
[986]290    void _moveSource(Edge e, Node n)
[949]291    {
292      if(edges[e.id].next_out != -1)
293        edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
294      if(edges[e.id].prev_out != -1)
295        edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
[986]296      else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
297      edges[e.id].source = n.id;
[949]298      edges[e.id].prev_out = -1;
299      edges[e.id].next_out = nodes[n.id].first_out;
300      nodes[n.id].first_out = e.id;
301    }
302
[919]303  };
[909]304
[946]305  typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase;
306  typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase;
[980]307  typedef DefaultMappableGraphExtender<IterableListGraphBase> MappableListGraphBase;
[946]308  typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase;
309  typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase;
310  typedef ErasableGraphExtender<ClearableListGraphBase> ErasableListGraphBase;
[400]311
[948]312/// \addtogroup graphs
313/// @{
[400]314
[948]315  ///A list graph class.
[400]316
[948]317  ///This is a simple and fast erasable graph implementation.
318  ///
[1010]319  ///It addition that it conforms to the
320  ///\ref concept::ErasableGraph "ErasableGraph" concept,
321  ///it also provides several additional useful extra functionalities.
[959]322  ///\sa concept::ErasableGraph.
[782]323
[948]324  class ListGraph : public ErasableListGraphBase
325  {
326  public:
[986]327    /// Moves the target of \c e to \c n
[948]328
[986]329    /// Moves the target of \c e to \c n
[948]330    ///
[1010]331    ///\note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
332    ///referencing the moved edge remain
333    ///valid. However <tt>InEdge</tt>'s are invalidated.
[986]334    void moveTarget(Edge e, Node n) { _moveTarget(e,n); }
335    /// Moves the source of \c e to \c n
[948]336
[986]337    /// Moves the source of \c e to \c n
[948]338    ///
[1010]339    ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
340    ///referencing the moved edge remain
341    ///valid. However <tt>OutEdge</tt>'s are invalidated.
[986]342    void moveSource(Edge e, Node n) { _moveSource(e,n); }
[949]343
[1010]344    /// Invert the direction of an edge.
345
346    ///\note The <tt>Edge</tt>'s
347    ///referencing the moved edge remain
348    ///valid. However <tt>OutEdge</tt>'s  and <tt>InEdge</tt>'s are invalidated.
349    void reverseEdge(Edge e) {
350      Node t=target(e);
351      _moveTarget(e,source(e));
352      _moveSource(e,t);
353    }
354
355    ///Using this it possible to avoid the superfluous memory allocation.
356
[949]357    ///Using this it possible to avoid the superfluous memory allocation.
358    ///\todo more docs...
359    void reserveEdge(int n) { edges.reserve(n); };
[1010]360
361    ///Contract two nodes.
362
363    ///This function contracts two nodes.
364    ///
365    ///Node \p b will be removed but instead of deleting
366    ///its neighboring edges, they will be joined to \p a.
367    ///The last parameter \p r controls whether to remove loops. \c true
368    ///means that loops will be removed.
369    ///
370    ///\note The <tt>Edge</tt>s
[1281]371    ///referencing a moved edge remain
[1010]372    ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
373    ///may be invalidated.
374    void contract(Node a,Node b,bool r=true)
375    {
376      for(OutEdgeIt e(*this,b);e!=INVALID;) {
377        OutEdgeIt f=e;
378        ++f;
379        if(r && target(e)==a) erase(e);
[1184]380        else moveSource(e,a);
[1010]381        e=f;
382      }
383      for(InEdgeIt e(*this,b);e!=INVALID;) {
384        InEdgeIt f=e;
385        ++f;
386        if(r && source(e)==a) erase(e);
[1184]387        else moveTarget(e,a);
[1010]388        e=f;
389      }
390      erase(b);
391    }
[1011]392
[1281]393    ///Split a node.
[1011]394
[1284]395    ///This function splits a node. First a new node is added to the graph,
396    ///then the source of each outgoing edge of \c n is moved to this new node.
[1281]397    ///If \c connect is \c true (this is the default value), then a new edge
398    ///from \c n to the newly created node is also added.
399    ///\return The newly created node.
400    ///
401    ///\note The <tt>Edge</tt>s
402    ///referencing a moved edge remain
403    ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
404    ///may be invalidated.
[1284]405    ///\warning This functionality cannot be used together with the SnapShot
406    ///feature.
[1281]407    ///\todo It could be implemented in a bit faster way.
408    Node split(Node n, bool connect = true)
409    {
410      Node b = addNode();
411      for(OutEdgeIt e(*this,n);e!=INVALID;) {
412        OutEdgeIt f=e;
413        ++f;
414        moveSource(e,b);
415        e=f;
416      }
417      if(connect) addEdge(n,b);
418      return b;
419    }
420     
[1011]421    ///Class to make a snapshot of the graph and to restrore to it later.
422
423    ///Class to make a snapshot of the graph and to restrore to it later.
424    ///
425    ///The newly added nodes and edges can be removed using the
426    ///restore() function.
427    ///
428    ///\warning Edge and node deletions cannot be restored.
429    ///\warning SnapShots cannot be nested.
[1035]430    ///\todo \c SnapShot or \c Snapshot?
[1039]431    class SnapShot : protected AlterationNotifier<Node>::ObserverBase,
432                     protected AlterationNotifier<Edge>::ObserverBase
[1011]433    {
434      protected:
435     
436      ListGraph *g;
437      std::list<Node> added_nodes;
438      std::list<Edge> added_edges;
439     
440      bool active;
441      virtual void add(const Node& n) {
442        added_nodes.push_back(n);
443      };
444      ///\bug Exception...
445      ///
446      virtual void erase(const Node&)
447      {
448        exit(1);
449      }
450      virtual void add(const Edge& n) {
451        added_edges.push_back(n);
452      };
453      ///\bug Exception...
454      ///
455      virtual void erase(const Edge&)
456      {
457        exit(1);
458      }
459
460      void regist(ListGraph &_g) {
461        g=&_g;
[1039]462        AlterationNotifier<Node>::ObserverBase::
[1040]463          attach(g->getNotifier(Node()));
[1039]464        AlterationNotifier<Edge>::ObserverBase::
[1040]465          attach(g->getNotifier(Edge()));
[1011]466      }
467           
468      void deregist() {
[1039]469        AlterationNotifier<Node>::ObserverBase::
[1011]470          detach();
[1039]471        AlterationNotifier<Edge>::ObserverBase::
[1011]472          detach();
473        g=0;
474      }
475           
476    public:
477      ///Default constructur.
478     
479      ///Default constructur.
480      ///To actually make a snapshot you must call save().
481      ///
482      SnapShot() : g(0) {}
483      ///Constructor that immediately makes a snapshot.
484     
485      ///This constructor immediately makes a snapshot of the graph.
486      ///\param _g The graph we make a snapshot of.
487      SnapShot(ListGraph &_g) {
488        regist(_g);
489      }
490      ///\bug Is it necessary?
491      ///
492      ~SnapShot()
493      {
494        if(g) deregist();
495      }
496     
497      ///Make a snapshot.
498
499      ///Make a snapshot of the graph.
500      ///
501      ///This function can be called more than once. In case of a repeated
502      ///call, the previous snapshot gets lost.
503      ///\param _g The graph we make the snapshot of.
504      void save(ListGraph &_g)
505      {
506        if(g!=&_g) {
507          if(g) deregist();
508          regist(_g);
509        }
510        added_nodes.clear();
511        added_edges.clear();
512      }
513     
514    ///Undo the changes until the last snapshot.
515
516    ///Undo the changes until last snapshot created by save().
517    ///
518    ///\todo This function might be called undo().
519      void restore() {
520        deregist();
521        while(!added_edges.empty()) {
522          g->erase(added_edges.front());
523          added_edges.pop_front();
524        }
525        while(!added_nodes.empty()) {
526          g->erase(added_nodes.front());
527          added_nodes.pop_front();
528        }
529      }
530    };
531   
[949]532  };
[1034]533
534
535  /**************** Undirected List Graph ****************/
536
537  typedef ErasableUndirGraphExtender<
538    ClearableUndirGraphExtender<
539    ExtendableUndirGraphExtender<
540    MappableUndirGraphExtender<
541    IterableUndirGraphExtender<
542    AlterableUndirGraphExtender<
543    UndirGraphExtender<ListGraphBase> > > > > > > ErasableUndirListGraphBase;
544
[1035]545  ///An undirected list graph class.
546
547  ///This is a simple and fast erasable undirected graph implementation.
548  ///
549  ///It conforms to the
550  ///\ref concept::UndirGraph "UndirGraph" concept.
551  ///
552  ///\sa concept::UndirGraph.
553  ///
[1161]554  ///\todo SnapShot, reverseEdge(), moveTarget(), moveSource(), contract()
555  ///haven't been implemented yet.
[1035]556  ///
[1034]557  class UndirListGraph : public ErasableUndirListGraphBase {
558  };
559
[949]560 
[948]561  /// @} 
562} //namespace lemon
[946]563 
[400]564
[946]565#endif
Note: See TracBrowser for help on using the repository browser.