1 | /* -*- C++ -*- |
---|
2 | * src/lemon/list_graph.h - Part of LEMON, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Combinatorial Optimization Research Group, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef LEMON_LIST_GRAPH_H |
---|
18 | #define LEMON_LIST_GRAPH_H |
---|
19 | |
---|
20 | ///\ingroup graphs |
---|
21 | ///\file |
---|
22 | ///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes. |
---|
23 | |
---|
24 | #include <lemon/erasable_graph_extender.h> |
---|
25 | #include <lemon/clearable_graph_extender.h> |
---|
26 | #include <lemon/extendable_graph_extender.h> |
---|
27 | |
---|
28 | #include <lemon/idmappable_graph_extender.h> |
---|
29 | |
---|
30 | #include <lemon/iterable_graph_extender.h> |
---|
31 | |
---|
32 | #include <lemon/alteration_observer_registry.h> |
---|
33 | |
---|
34 | #include <lemon/default_map.h> |
---|
35 | |
---|
36 | |
---|
37 | namespace lemon { |
---|
38 | |
---|
39 | class ListGraphBase { |
---|
40 | |
---|
41 | struct NodeT { |
---|
42 | int first_in,first_out; |
---|
43 | int prev, next; |
---|
44 | }; |
---|
45 | |
---|
46 | struct EdgeT { |
---|
47 | int head, tail; |
---|
48 | int prev_in, prev_out; |
---|
49 | int next_in, next_out; |
---|
50 | }; |
---|
51 | |
---|
52 | std::vector<NodeT> nodes; |
---|
53 | |
---|
54 | int first_node; |
---|
55 | |
---|
56 | int first_free_node; |
---|
57 | |
---|
58 | std::vector<EdgeT> edges; |
---|
59 | |
---|
60 | int first_free_edge; |
---|
61 | |
---|
62 | public: |
---|
63 | |
---|
64 | typedef ListGraphBase Graph; |
---|
65 | |
---|
66 | class Node { |
---|
67 | friend class Graph; |
---|
68 | protected: |
---|
69 | |
---|
70 | int id; |
---|
71 | Node(int pid) { id = pid;} |
---|
72 | |
---|
73 | public: |
---|
74 | Node() {} |
---|
75 | Node (Invalid) { id = -1; } |
---|
76 | bool operator==(const Node& node) const {return id == node.id;} |
---|
77 | bool operator!=(const Node& node) const {return id != node.id;} |
---|
78 | bool operator<(const Node& node) const {return id < node.id;} |
---|
79 | }; |
---|
80 | |
---|
81 | class Edge { |
---|
82 | friend class Graph; |
---|
83 | protected: |
---|
84 | |
---|
85 | int id; |
---|
86 | Edge(int pid) { id = pid;} |
---|
87 | |
---|
88 | public: |
---|
89 | Edge() {} |
---|
90 | Edge (Invalid) { id = -1; } |
---|
91 | bool operator==(const Edge& edge) const {return id == edge.id;} |
---|
92 | bool operator!=(const Edge& edge) const {return id != edge.id;} |
---|
93 | bool operator<(const Edge& edge) const {return id < edge.id;} |
---|
94 | }; |
---|
95 | |
---|
96 | |
---|
97 | |
---|
98 | ListGraphBase() |
---|
99 | : nodes(), first_node(-1), |
---|
100 | first_free_node(-1), edges(), first_free_edge(-1) {} |
---|
101 | |
---|
102 | |
---|
103 | ///Using this it possible to avoid the superfluous memory allocation. |
---|
104 | ///\todo more docs... |
---|
105 | ///\todo It should be defined in ListGraph. |
---|
106 | void reserveEdge(int n) { edges.reserve(n); }; |
---|
107 | |
---|
108 | /// Maximum node ID. |
---|
109 | |
---|
110 | /// Maximum node ID. |
---|
111 | ///\sa id(Node) |
---|
112 | int maxNodeId() const { return nodes.size()-1; } |
---|
113 | |
---|
114 | /// Maximum edge ID. |
---|
115 | |
---|
116 | /// Maximum edge ID. |
---|
117 | ///\sa id(Edge) |
---|
118 | int maxEdgeId() const { return edges.size()-1; } |
---|
119 | |
---|
120 | Node tail(Edge e) const { return edges[e.id].tail; } |
---|
121 | Node head(Edge e) const { return edges[e.id].head; } |
---|
122 | |
---|
123 | |
---|
124 | void first(Node& node) const { |
---|
125 | node.id = first_node; |
---|
126 | } |
---|
127 | |
---|
128 | void next(Node& node) const { |
---|
129 | node.id = nodes[node.id].next; |
---|
130 | } |
---|
131 | |
---|
132 | |
---|
133 | void first(Edge& e) const { |
---|
134 | int n; |
---|
135 | for(n = first_node; |
---|
136 | n!=-1 && nodes[n].first_in == -1; |
---|
137 | n = nodes[n].next); |
---|
138 | e.id = (n == -1) ? -1 : nodes[n].first_in; |
---|
139 | } |
---|
140 | |
---|
141 | void next(Edge& edge) const { |
---|
142 | if (edges[edge.id].next_in != -1) { |
---|
143 | edge.id = edges[edge.id].next_in; |
---|
144 | } else { |
---|
145 | int n; |
---|
146 | for(n = nodes[edges[edge.id].head].next; |
---|
147 | n!=-1 && nodes[n].first_in == -1; |
---|
148 | n = nodes[n].next); |
---|
149 | edge.id = (n == -1) ? -1 : nodes[n].first_in; |
---|
150 | } |
---|
151 | } |
---|
152 | |
---|
153 | void firstOut(Edge &e, const Node& v) const { |
---|
154 | e.id = nodes[v.id].first_out; |
---|
155 | } |
---|
156 | void nextOut(Edge &e) const { |
---|
157 | e.id=edges[e.id].next_out; |
---|
158 | } |
---|
159 | |
---|
160 | void firstIn(Edge &e, const Node& v) const { |
---|
161 | e.id = nodes[v.id].first_in; |
---|
162 | } |
---|
163 | void nextIn(Edge &e) const { |
---|
164 | e.id=edges[e.id].next_in; |
---|
165 | } |
---|
166 | |
---|
167 | |
---|
168 | static int id(Node v) { return v.id; } |
---|
169 | static int id(Edge e) { return e.id; } |
---|
170 | |
---|
171 | /// Adds a new node to the graph. |
---|
172 | |
---|
173 | /// \warning It adds the new node to the front of the list. |
---|
174 | /// (i.e. the lastly added node becomes the first.) |
---|
175 | Node addNode() { |
---|
176 | int n; |
---|
177 | |
---|
178 | if(first_free_node==-1) { |
---|
179 | n = nodes.size(); |
---|
180 | nodes.push_back(NodeT()); |
---|
181 | } else { |
---|
182 | n = first_free_node; |
---|
183 | first_free_node = nodes[n].next; |
---|
184 | } |
---|
185 | |
---|
186 | nodes[n].next = first_node; |
---|
187 | if(first_node != -1) nodes[first_node].prev = n; |
---|
188 | first_node = n; |
---|
189 | nodes[n].prev = -1; |
---|
190 | |
---|
191 | nodes[n].first_in = nodes[n].first_out = -1; |
---|
192 | |
---|
193 | return Node(n); |
---|
194 | } |
---|
195 | |
---|
196 | Edge addEdge(Node u, Node v) { |
---|
197 | int n; |
---|
198 | |
---|
199 | if (first_free_edge == -1) { |
---|
200 | n = edges.size(); |
---|
201 | edges.push_back(EdgeT()); |
---|
202 | } else { |
---|
203 | n = first_free_edge; |
---|
204 | first_free_edge = edges[n].next_in; |
---|
205 | } |
---|
206 | |
---|
207 | edges[n].tail = u.id; |
---|
208 | edges[n].head = v.id; |
---|
209 | |
---|
210 | edges[n].next_out = nodes[u.id].first_out; |
---|
211 | if(nodes[u.id].first_out != -1) { |
---|
212 | edges[nodes[u.id].first_out].prev_out = n; |
---|
213 | } |
---|
214 | |
---|
215 | edges[n].next_in = nodes[v.id].first_in; |
---|
216 | if(nodes[v.id].first_in != -1) { |
---|
217 | edges[nodes[v.id].first_in].prev_in = n; |
---|
218 | } |
---|
219 | |
---|
220 | edges[n].prev_in = edges[n].prev_out = -1; |
---|
221 | |
---|
222 | nodes[u.id].first_out = nodes[v.id].first_in = n; |
---|
223 | |
---|
224 | return Edge(n); |
---|
225 | } |
---|
226 | |
---|
227 | void erase(const Node& node) { |
---|
228 | int n = node.id; |
---|
229 | |
---|
230 | if(nodes[n].next != -1) { |
---|
231 | nodes[nodes[n].next].prev = nodes[n].prev; |
---|
232 | } |
---|
233 | |
---|
234 | if(nodes[n].prev != -1) { |
---|
235 | nodes[nodes[n].prev].next = nodes[n].next; |
---|
236 | } else { |
---|
237 | first_node = nodes[n].next; |
---|
238 | } |
---|
239 | |
---|
240 | nodes[n].next = first_free_node; |
---|
241 | first_free_node = n; |
---|
242 | |
---|
243 | } |
---|
244 | |
---|
245 | void erase(const Edge& edge) { |
---|
246 | int n = edge.id; |
---|
247 | |
---|
248 | if(edges[n].next_in!=-1) { |
---|
249 | edges[edges[n].next_in].prev_in = edges[n].prev_in; |
---|
250 | } |
---|
251 | |
---|
252 | if(edges[n].prev_in!=-1) { |
---|
253 | edges[edges[n].prev_in].next_in = edges[n].next_in; |
---|
254 | } else { |
---|
255 | nodes[edges[n].head].first_in = edges[n].next_in; |
---|
256 | } |
---|
257 | |
---|
258 | |
---|
259 | if(edges[n].next_out!=-1) { |
---|
260 | edges[edges[n].next_out].prev_out = edges[n].prev_out; |
---|
261 | } |
---|
262 | |
---|
263 | if(edges[n].prev_out!=-1) { |
---|
264 | edges[edges[n].prev_out].next_out = edges[n].next_out; |
---|
265 | } else { |
---|
266 | nodes[edges[n].tail].first_out = edges[n].next_out; |
---|
267 | } |
---|
268 | |
---|
269 | edges[n].next_in = first_free_edge; |
---|
270 | first_free_edge = n; |
---|
271 | |
---|
272 | } |
---|
273 | |
---|
274 | void clear() { |
---|
275 | edges.clear(); |
---|
276 | nodes.clear(); |
---|
277 | first_node = first_free_node = first_free_edge = -1; |
---|
278 | } |
---|
279 | |
---|
280 | }; |
---|
281 | |
---|
282 | typedef AlterableGraphExtender<ListGraphBase> AlterableListGraphBase; |
---|
283 | typedef IterableGraphExtender<AlterableListGraphBase> IterableListGraphBase; |
---|
284 | typedef IdMappableGraphExtender<IterableListGraphBase> IdMappableListGraphBase; |
---|
285 | typedef DefaultMappableGraphExtender<IdMappableListGraphBase> MappableListGraphBase; |
---|
286 | typedef ExtendableGraphExtender<MappableListGraphBase> ExtendableListGraphBase; |
---|
287 | typedef ClearableGraphExtender<ExtendableListGraphBase> ClearableListGraphBase; |
---|
288 | typedef ErasableGraphExtender<ClearableListGraphBase> ErasableListGraphBase; |
---|
289 | |
---|
290 | /// \addtogroup graphs |
---|
291 | /// @{ |
---|
292 | |
---|
293 | ///A list graph class. |
---|
294 | |
---|
295 | ///This is a simple and fast erasable graph implementation. |
---|
296 | /// |
---|
297 | ///It conforms to the |
---|
298 | ///\ref skeleton::ErasableGraph "ErasableGraph" concept. |
---|
299 | ///\sa skeleton::ErasableGraph. |
---|
300 | |
---|
301 | class ListGraph : public ErasableListGraphBase |
---|
302 | { |
---|
303 | public: |
---|
304 | /// Moves the head of \c e to \c n |
---|
305 | |
---|
306 | /// Moves the head of \c e to \c n |
---|
307 | /// |
---|
308 | void moveHead(Edge e, Node n) |
---|
309 | { |
---|
310 | if(edges[e.n].next_in != -1) |
---|
311 | edges[edges[e.n].next_in].prev_in = edges[e.n].prev_in; |
---|
312 | if(edges[e.n].prev_in != -1) |
---|
313 | edges[edges[e.n].prev_in].next_in = edges[e.n].next_in; |
---|
314 | else nodes[edges[e.n].head].first_in = edges[e.n].next_in; |
---|
315 | edges[e.n].head = n.n; |
---|
316 | edges[e.n].prev_in = -1; |
---|
317 | edges[e.n].next_in = nodes[n.n].first_in; |
---|
318 | nodes[n.n].first_in = e.n; |
---|
319 | } |
---|
320 | /// Moves the tail of \c e to \c n |
---|
321 | |
---|
322 | /// Moves the tail of \c e to \c n |
---|
323 | /// |
---|
324 | void moveTail(Edge e, Node n) |
---|
325 | { |
---|
326 | if(edges[e.n].next_out != -1) |
---|
327 | edges[edges[e.n].next_out].prev_out = edges[e.n].prev_out; |
---|
328 | if(edges[e.n].prev_out != -1) |
---|
329 | edges[edges[e.n].prev_out].next_out = edges[e.n].next_out; |
---|
330 | else nodes[edges[e.n].tail].first_out = edges[e.n].next_out; |
---|
331 | edges[e.n].tail = n.n; |
---|
332 | edges[e.n].prev_out = -1; |
---|
333 | edges[e.n].next_out = nodes[n.n].first_out; |
---|
334 | nodes[n.n].first_out = e.n; |
---|
335 | } |
---|
336 | } |
---|
337 | /// @} |
---|
338 | } //namespace lemon |
---|
339 | |
---|
340 | |
---|
341 | #endif |
---|