COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/lemon/lp_base.h @ 1405:3626c7f10f14

Last change on this file since 1405:3626c7f10f14 was 1405:3626c7f10f14, checked in by athos, 19 years ago

Deleted _setRowLowerBound() and _setRowUpperBound() functions. Cplex worked (now it does not because of _getPrimalStatus()).

File size: 25.0 KB
RevLine 
[1247]1/* -*- C++ -*-
[1253]2 * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
[1247]3 *
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[1247]6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
[1246]17#ifndef LEMON_LP_BASE_H
18#define LEMON_LP_BASE_H
19
[1253]20#include<vector>
[1272]21#include<map>
[1256]22#include<limits>
[1397]23#include<cmath>
[1253]24
[1256]25#include<lemon/utility.h>
[1253]26#include<lemon/error.h>
[1256]27#include<lemon/invalid.h>
[1253]28
[1272]29//#include"lin_expr.h"
30
[1246]31///\file
32///\brief The interface of the LP solver interface.
[1328]33///\ingroup gen_opt_group
[1246]34namespace lemon {
[1253]35 
36  ///Internal data structure to convert floating id's to fix one's
37   
[1279]38  ///\todo This might be implemented to be also usable in other places.
[1253]39  class _FixId
40  {
41    std::vector<int> index;
42    std::vector<int> cross;
43    int first_free;
44  public:
45    _FixId() : first_free(-1) {};
46    ///Convert a floating id to a fix one
47
48    ///\param n is a floating id
49    ///\return the corresponding fix id
50    int fixId(int n) {return cross[n];}
51    ///Convert a fix id to a floating one
52
53    ///\param n is a fix id
54    ///\return the corresponding floating id
55    int floatingId(int n) { return index[n];}
56    ///Add a new floating id.
57
58    ///\param n is a floating id
59    ///\return the fix id of the new value
60    ///\todo Multiple additions should also be handled.
61    int insert(int n)
62    {
63      if(n>=int(cross.size())) {
64        cross.resize(n+1);
65        if(first_free==-1) {
66          cross[n]=index.size();
67          index.push_back(n);
68        }
69        else {
70          cross[n]=first_free;
71          int next=index[first_free];
72          index[first_free]=n;
73          first_free=next;
74        }
[1256]75        return cross[n];
[1253]76      }
[1273]77      ///\todo Create an own exception type.
[1253]78      else throw LogicError(); //floatingId-s must form a continuous range;
79    }
80    ///Remove a fix id.
81
82    ///\param n is a fix id
83    ///
84    void erase(int n)
85    {
86      int fl=index[n];
87      index[n]=first_free;
88      first_free=n;
89      for(int i=fl+1;i<int(cross.size());++i) {
90        cross[i-1]=cross[i];
91        index[cross[i]]--;
92      }
93      cross.pop_back();
94    }
95    ///An upper bound on the largest fix id.
96
97    ///\todo Do we need this?
98    ///
99    std::size_t maxFixId() { return cross.size()-1; }
100 
101  };
102   
103  ///Common base class for LP solvers
[1328]104 
105  ///\todo Much more docs
106  ///\ingroup gen_opt_group
[1246]107  class LpSolverBase {
[1323]108
[1247]109  public:
110
[1263]111    ///\e
[1303]112    enum SolveExitStatus {
[1263]113      ///\e
[1293]114      SOLVED = 0,
[1263]115      ///\e
[1293]116      UNSOLVED = 1
[1291]117    };
118     
119    ///\e
[1303]120    enum SolutionStatus {
[1295]121      ///Feasible solution has'n been found (but may exist).
122
123      ///\todo NOTFOUND might be a better name.
124      ///
[1293]125      UNDEFINED = 0,
[1295]126      ///The problem has no feasible solution
[1293]127      INFEASIBLE = 1,
[1295]128      ///Feasible solution found
[1293]129      FEASIBLE = 2,
[1295]130      ///Optimal solution exists and found
131      OPTIMAL = 3,
132      ///The cost function is unbounded
133
134      ///\todo Give a feasible solution and an infinite ray (and the
135      ///corresponding bases)
136      INFINITE = 4
[1263]137    };
138     
[1256]139    ///The floating point type used by the solver
[1247]140    typedef double Value;
[1256]141    ///The infinity constant
[1247]142    static const Value INF;
[1264]143    ///The not a number constant
144    static const Value NaN;
[1253]145   
[1256]146    ///Refer to a column of the LP.
147
148    ///This type is used to refer to a column of the LP.
149    ///
150    ///Its value remains valid and correct even after the addition or erase of
[1273]151    ///other columns.
[1256]152    ///
153    ///\todo Document what can one do with a Col (INVALID, comparing,
154    ///it is similar to Node/Edge)
155    class Col {
156    protected:
157      int id;
158      friend class LpSolverBase;
159    public:
[1259]160      typedef Value ExprValue;
[1256]161      typedef True LpSolverCol;
162      Col() {}
163      Col(const Invalid&) : id(-1) {}
164      bool operator<(Col c) const  {return id<c.id;}
165      bool operator==(Col c) const  {return id==c.id;}
166      bool operator!=(Col c) const  {return id==c.id;}
167    };
168
169    ///Refer to a row of the LP.
170
171    ///This type is used to refer to a row of the LP.
172    ///
173    ///Its value remains valid and correct even after the addition or erase of
[1273]174    ///other rows.
[1256]175    ///
176    ///\todo Document what can one do with a Row (INVALID, comparing,
177    ///it is similar to Node/Edge)
178    class Row {
179    protected:
180      int id;
181      friend class LpSolverBase;
182    public:
[1259]183      typedef Value ExprValue;
[1256]184      typedef True LpSolverRow;
185      Row() {}
186      Row(const Invalid&) : id(-1) {}
187      typedef True LpSolverRow;
188      bool operator<(Row c) const  {return id<c.id;}
189      bool operator==(Row c) const  {return id==c.id;}
190      bool operator!=(Row c) const  {return id==c.id;}
191   };
[1259]192   
[1279]193    ///Linear expression of variables and a constant component
194   
195    ///This data structure strores a linear expression of the variables
196    ///(\ref Col "Col"s) and also has a constant component.
197    ///
198    ///There are several ways to access and modify the contents of this
199    ///container.
200    ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
[1364]201    ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
[1279]202    ///read and modify the coefficients like
203    ///these.
204    ///\code
205    ///e[v]=5;
206    ///e[v]+=12;
207    ///e.erase(v);
208    ///\endcode
209    ///or you can also iterate through its elements.
210    ///\code
211    ///double s=0;
212    ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
213    ///  s+=i->second;
214    ///\endcode
215    ///(This code computes the sum of all coefficients).
216    ///- Numbers (<tt>double</tt>'s)
217    ///and variables (\ref Col "Col"s) directly convert to an
218    ///\ref Expr and the usual linear operations are defined so 
219    ///\code
220    ///v+w
221    ///2*v-3.12*(v-w/2)+2
222    ///v*2.1+(3*v+(v*12+w+6)*3)/2
223    ///\endcode
[1328]224    ///are valid \ref Expr "Expr"essions.
225    ///The usual assignment operations are also defined.
[1279]226    ///\code
227    ///e=v+w;
228    ///e+=2*v-3.12*(v-w/2)+2;
229    ///e*=3.4;
230    ///e/=5;
231    ///\endcode
232    ///- The constant member can be set and read by \ref constComp()
233    ///\code
234    ///e.constComp()=12;
235    ///double c=e.constComp();
236    ///\endcode
237    ///
[1328]238    ///\note \ref clear() not only sets all coefficients to 0 but also
[1279]239    ///clears the constant components.
[1328]240    ///
241    ///\sa Constr
242    ///
[1273]243    class Expr : public std::map<Col,Value>
[1272]244    {
245    public:
[1273]246      typedef LpSolverBase::Col Key;
247      typedef LpSolverBase::Value Value;
[1272]248     
249    protected:
[1273]250      typedef std::map<Col,Value> Base;
[1272]251     
[1273]252      Value const_comp;
[1272]253  public:
254      typedef True IsLinExpression;
255      ///\e
256      Expr() : Base(), const_comp(0) { }
257      ///\e
[1273]258      Expr(const Key &v) : const_comp(0) {
[1272]259        Base::insert(std::make_pair(v, 1));
260      }
261      ///\e
[1273]262      Expr(const Value &v) : const_comp(v) {}
[1272]263      ///\e
[1273]264      void set(const Key &v,const Value &c) {
[1272]265        Base::insert(std::make_pair(v, c));
266      }
267      ///\e
[1273]268      Value &constComp() { return const_comp; }
[1272]269      ///\e
[1273]270      const Value &constComp() const { return const_comp; }
[1272]271     
272      ///Removes the components with zero coefficient.
273      void simplify() {
274        for (Base::iterator i=Base::begin(); i!=Base::end();) {
275          Base::iterator j=i;
276          ++j;
277          if ((*i).second==0) Base::erase(i);
278          j=i;
279        }
280      }
[1273]281
282      ///Sets all coefficients and the constant component to 0.
283      void clear() {
284        Base::clear();
285        const_comp=0;
286      }
287
[1272]288      ///\e
289      Expr &operator+=(const Expr &e) {
290        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
291          (*this)[j->first]+=j->second;
292        ///\todo it might be speeded up using "hints"
293        const_comp+=e.const_comp;
294        return *this;
295      }
296      ///\e
297      Expr &operator-=(const Expr &e) {
298        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
299          (*this)[j->first]-=j->second;
300        const_comp-=e.const_comp;
301        return *this;
302      }
303      ///\e
[1273]304      Expr &operator*=(const Value &c) {
[1272]305        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
306          j->second*=c;
307        const_comp*=c;
308        return *this;
309      }
310      ///\e
[1273]311      Expr &operator/=(const Value &c) {
[1272]312        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
313          j->second/=c;
314        const_comp/=c;
315        return *this;
316      }
317    };
318   
[1264]319    ///Linear constraint
[1328]320
[1364]321    ///This data stucture represents a linear constraint in the LP.
322    ///Basically it is a linear expression with a lower or an upper bound
323    ///(or both). These parts of the constraint can be obtained by the member
324    ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
325    ///respectively.
326    ///There are two ways to construct a constraint.
327    ///- You can set the linear expression and the bounds directly
328    ///  by the functions above.
329    ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
330    ///  are defined between expressions, or even between constraints whenever
331    ///  it makes sense. Therefore if \c e and \c f are linear expressions and
332    ///  \c s and \c t are numbers, then the followings are valid expressions
333    ///  and thus they can be used directly e.g. in \ref addRow() whenever
334    ///  it makes sense.
335    ///  \code
336    ///  e<=s
337    ///  e<=f
338    ///  s<=e<=t
339    ///  e>=t
340    ///  \endcode
341    ///\warning The validity of a constraint is checked only at run time, so
342    ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
343    ///\ref LogicError exception.
[1272]344    class Constr
345    {
346    public:
347      typedef LpSolverBase::Expr Expr;
[1273]348      typedef Expr::Key Key;
349      typedef Expr::Value Value;
[1272]350     
[1364]351//       static const Value INF;
352//       static const Value NaN;
353
[1273]354    protected:
355      Expr _expr;
356      Value _lb,_ub;
357    public:
358      ///\e
359      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
360      ///\e
361      Constr(Value lb,const Expr &e,Value ub) :
362        _expr(e), _lb(lb), _ub(ub) {}
363      ///\e
364      Constr(const Expr &e,Value ub) :
365        _expr(e), _lb(NaN), _ub(ub) {}
366      ///\e
367      Constr(Value lb,const Expr &e) :
368        _expr(e), _lb(lb), _ub(NaN) {}
369      ///\e
[1272]370      Constr(const Expr &e) :
[1273]371        _expr(e), _lb(NaN), _ub(NaN) {}
372      ///\e
373      void clear()
374      {
375        _expr.clear();
376        _lb=_ub=NaN;
377      }
[1364]378
379      ///Reference to the linear expression
[1273]380      Expr &expr() { return _expr; }
[1364]381      ///Cont reference to the linear expression
[1273]382      const Expr &expr() const { return _expr; }
[1364]383      ///Reference to the lower bound.
384
385      ///\return
386      ///- -\ref INF: the constraint is lower unbounded.
387      ///- -\ref NaN: lower bound has not been set.
388      ///- finite number: the lower bound
[1273]389      Value &lowerBound() { return _lb; }
[1364]390      ///The const version of \ref lowerBound()
[1273]391      const Value &lowerBound() const { return _lb; }
[1364]392      ///Reference to the upper bound.
393
394      ///\return
395      ///- -\ref INF: the constraint is upper unbounded.
396      ///- -\ref NaN: upper bound has not been set.
397      ///- finite number: the upper bound
[1273]398      Value &upperBound() { return _ub; }
[1364]399      ///The const version of \ref upperBound()
[1273]400      const Value &upperBound() const { return _ub; }
[1364]401      ///Is the constraint lower bounded?
[1295]402      bool lowerBounded() const {
403        using namespace std;
[1397]404        return finite(_lb);
[1295]405      }
[1364]406      ///Is the constraint upper bounded?
[1295]407      bool upperBounded() const {
408        using namespace std;
[1397]409        return finite(_ub);
[1295]410      }
[1272]411    };
412   
[1253]413
414  protected:
415    _FixId rows;
416    _FixId cols;
[1246]417
[1323]418    //Abstract virtual functions
[1364]419    virtual LpSolverBase &_newLp() = 0;
420    virtual LpSolverBase &_copyLp() = 0;
421
[1246]422    virtual int _addCol() = 0;
423    virtual int _addRow() = 0;
424    virtual void _setRowCoeffs(int i,
[1251]425                               int length,
[1247]426                               int  const * indices,
427                               Value  const * values ) = 0;
[1246]428    virtual void _setColCoeffs(int i,
[1251]429                               int length,
[1247]430                               int  const * indices,
431                               Value  const * values ) = 0;
[1294]432    virtual void _setColLowerBound(int i, Value value) = 0;
433    virtual void _setColUpperBound(int i, Value value) = 0;
[1405]434//     virtual void _setRowLowerBound(int i, Value value) = 0;
435//     virtual void _setRowUpperBound(int i, Value value) = 0;
[1379]436    virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
[1294]437    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
[1377]438    virtual void _clearObj()=0;
439//     virtual void _setObj(int length,
440//                          int  const * indices,
441//                          Value  const * values ) = 0;
[1303]442    virtual SolveExitStatus _solve() = 0;
[1294]443    virtual Value _getPrimal(int i) = 0;
[1312]444    virtual Value _getPrimalValue() = 0;
445    virtual SolutionStatus _getPrimalStatus() = 0;
446    virtual void _setMax() = 0;
447    virtual void _setMin() = 0;
448   
[1323]449    //Own protected stuff
450   
451    //Constant component of the objective function
452    Value obj_const_comp;
453   
[1377]454
455
[1323]456   
[1253]457  public:
458
[1323]459    ///\e
460    LpSolverBase() : obj_const_comp(0) {}
[1253]461
462    ///\e
463    virtual ~LpSolverBase() {}
464
[1364]465    ///Creates a new LP problem
466    LpSolverBase &newLp() {return _newLp();}
[1381]467    ///Makes a copy of the LP problem
[1364]468    LpSolverBase &copyLp() {return _copyLp();}
469   
[1294]470    ///\name Build up and modify of the LP
[1263]471
472    ///@{
473
[1253]474    ///Add a new empty column (i.e a new variable) to the LP
475    Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
[1263]476
[1294]477    ///\brief Adds several new columns
478    ///(i.e a variables) at once
[1256]479    ///
[1273]480    ///This magic function takes a container as its argument
[1256]481    ///and fills its elements
482    ///with new columns (i.e. variables)
[1273]483    ///\param t can be
484    ///- a standard STL compatible iterable container with
485    ///\ref Col as its \c values_type
486    ///like
487    ///\code
488    ///std::vector<LpSolverBase::Col>
489    ///std::list<LpSolverBase::Col>
490    ///\endcode
491    ///- a standard STL compatible iterable container with
492    ///\ref Col as its \c mapped_type
493    ///like
494    ///\code
[1364]495    ///std::map<AnyType,LpSolverBase::Col>
[1273]496    ///\endcode
497    ///- an iterable lemon \ref concept::WriteMap "write map" like
498    ///\code
499    ///ListGraph::NodeMap<LpSolverBase::Col>
500    ///ListGraph::EdgeMap<LpSolverBase::Col>
501    ///\endcode
[1256]502    ///\return The number of the created column.
503#ifdef DOXYGEN
504    template<class T>
505    int addColSet(T &t) { return 0;}
506#else
507    template<class T>
508    typename enable_if<typename T::value_type::LpSolverCol,int>::type
509    addColSet(T &t,dummy<0> = 0) {
510      int s=0;
511      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
512      return s;
513    }
514    template<class T>
515    typename enable_if<typename T::value_type::second_type::LpSolverCol,
516                       int>::type
517    addColSet(T &t,dummy<1> = 1) {
518      int s=0;
519      for(typename T::iterator i=t.begin();i!=t.end();++i) {
520        i->second=addCol();
521        s++;
522      }
523      return s;
524    }
[1272]525    template<class T>
526    typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
527                       int>::type
528    addColSet(T &t,dummy<2> = 2) {
529      ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
530      int s=0;
531      for(typename T::ValueSet::iterator i=t.valueSet().begin();
532          i!=t.valueSet().end();
533          ++i)
534        {
535          *i=addCol();
536          s++;
537        }
538      return s;
539    }
[1256]540#endif
[1263]541
[1253]542    ///Add a new empty row (i.e a new constaint) to the LP
[1258]543
544    ///This function adds a new empty row (i.e a new constaint) to the LP.
545    ///\return The created row
[1253]546    Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
547
[1258]548    ///Set a row (i.e a constaint) of the LP
[1253]549
[1258]550    ///\param r is the row to be modified
[1259]551    ///\param l is lower bound (-\ref INF means no bound)
[1258]552    ///\param e is a linear expression (see \ref Expr)
[1259]553    ///\param u is the upper bound (\ref INF means no bound)
[1253]554    ///\bug This is a temportary function. The interface will change to
555    ///a better one.
[1328]556    ///\todo Option to control whether a constraint with a single variable is
557    ///added or not.
[1258]558    void setRow(Row r, Value l,const Expr &e, Value u) {
[1253]559      std::vector<int> indices;
560      std::vector<Value> values;
561      indices.push_back(0);
562      values.push_back(0);
[1258]563      for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
[1256]564        if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
565          indices.push_back(cols.floatingId((*i).first.id));
566          values.push_back((*i).second);
567        }
[1253]568      _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
569                    &indices[0],&values[0]);
[1405]570//       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
571//       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
572       _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
[1258]573    }
574
[1264]575    ///Set a row (i.e a constaint) of the LP
576
577    ///\param r is the row to be modified
578    ///\param c is a linear expression (see \ref Constr)
579    void setRow(Row r, const Constr &c) {
[1273]580      setRow(r,
[1275]581             c.lowerBounded()?c.lowerBound():-INF,
[1273]582             c.expr(),
[1275]583             c.upperBounded()?c.upperBound():INF);
[1264]584    }
585
[1258]586    ///Add a new row (i.e a new constaint) to the LP
587
[1259]588    ///\param l is the lower bound (-\ref INF means no bound)
[1258]589    ///\param e is a linear expression (see \ref Expr)
[1259]590    ///\param u is the upper bound (\ref INF means no bound)
[1258]591    ///\return The created row.
592    ///\bug This is a temportary function. The interface will change to
593    ///a better one.
594    Row addRow(Value l,const Expr &e, Value u) {
595      Row r=addRow();
596      setRow(r,l,e,u);
[1253]597      return r;
598    }
599
[1264]600    ///Add a new row (i.e a new constaint) to the LP
601
602    ///\param c is a linear expression (see \ref Constr)
603    ///\return The created row.
604    Row addRow(const Constr &c) {
605      Row r=addRow();
606      setRow(r,c);
607      return r;
608    }
609
[1253]610    /// Set the lower bound of a column (i.e a variable)
611
[1293]612    /// The upper bound of a variable (column) has to be given by an
[1253]613    /// extended number of type Value, i.e. a finite number of type
[1259]614    /// Value or -\ref INF.
[1293]615    void colLowerBound(Col c, Value value) {
[1253]616      _setColLowerBound(cols.floatingId(c.id),value);
617    }
618    /// Set the upper bound of a column (i.e a variable)
619
[1293]620    /// The upper bound of a variable (column) has to be given by an
[1253]621    /// extended number of type Value, i.e. a finite number of type
[1259]622    /// Value or \ref INF.
[1293]623    void colUpperBound(Col c, Value value) {
[1253]624      _setColUpperBound(cols.floatingId(c.id),value);
625    };
[1293]626    /// Set the lower and the upper bounds of a column (i.e a variable)
627
628    /// The lower and the upper bounds of
629    /// a variable (column) have to be given by an
630    /// extended number of type Value, i.e. a finite number of type
631    /// Value, -\ref INF or \ref INF.
632    void colBounds(Col c, Value lower, Value upper) {
633      _setColLowerBound(cols.floatingId(c.id),lower);
634      _setColUpperBound(cols.floatingId(c.id),upper);
635    }
636   
[1405]637//     /// Set the lower bound of a row (i.e a constraint)
[1253]638
[1405]639//     /// The lower bound of a linear expression (row) has to be given by an
640//     /// extended number of type Value, i.e. a finite number of type
641//     /// Value or -\ref INF.
642//     void rowLowerBound(Row r, Value value) {
643//       _setRowLowerBound(rows.floatingId(r.id),value);
644//     };
645//     /// Set the upper bound of a row (i.e a constraint)
[1253]646
[1405]647//     /// The upper bound of a linear expression (row) has to be given by an
648//     /// extended number of type Value, i.e. a finite number of type
649//     /// Value or \ref INF.
650//     void rowUpperBound(Row r, Value value) {
651//       _setRowUpperBound(rows.floatingId(r.id),value);
652//     };
653
654    /// Set the lower and the upper bounds of a row (i.e a constraint)
[1293]655
656    /// The lower and the upper bounds of
657    /// a constraint (row) have to be given by an
658    /// extended number of type Value, i.e. a finite number of type
659    /// Value, -\ref INF or \ref INF.
660    void rowBounds(Row c, Value lower, Value upper) {
[1379]661      _setRowBounds(rows.floatingId(c.id),lower, upper);
662      // _setRowUpperBound(rows.floatingId(c.id),upper);
[1293]663    }
664   
[1253]665    ///Set an element of the objective function
[1293]666    void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
[1253]667    ///Set the objective function
668   
669    ///\param e is a linear expression of type \ref Expr.
[1323]670    ///\bug The previous objective function is not cleared!
[1253]671    void setObj(Expr e) {
[1377]672      _clearObj();
[1253]673      for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
[1293]674        objCoeff((*i).first,(*i).second);
[1323]675      obj_const_comp=e.constComp();
[1253]676    }
[1263]677
[1312]678    ///Maximize
679    void max() { _setMax(); }
680    ///Minimize
681    void min() { _setMin(); }
682
683   
[1263]684    ///@}
685
686
[1294]687    ///\name Solve the LP
[1263]688
689    ///@{
690
691    ///\e
[1303]692    SolveExitStatus solve() { return _solve(); }
[1263]693   
694    ///@}
695   
[1294]696    ///\name Obtain the solution
[1263]697
698    ///@{
699
700    ///\e
[1312]701    SolutionStatus primalStatus() {
702      return _getPrimalStatus();
[1294]703    }
704
705    ///\e
[1293]706    Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
[1263]707
[1312]708    ///\e
709
710    ///\return
711    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
712    /// of the primal problem, depending on whether we minimize or maximize.
[1364]713    ///- \ref NaN if no primal solution is found.
[1312]714    ///- The (finite) objective value if an optimal solution is found.
[1323]715    Value primalValue() { return _getPrimalValue()+obj_const_comp;}
[1263]716    ///@}
[1253]717   
[1248]718  }; 
[1246]719
[1272]720  ///\e
721 
722  ///\relates LpSolverBase::Expr
723  ///
724  inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
725                                      const LpSolverBase::Expr &b)
726  {
727    LpSolverBase::Expr tmp(a);
[1364]728    tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
[1272]729    return tmp;
730  }
731  ///\e
732 
733  ///\relates LpSolverBase::Expr
734  ///
735  inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
736                                      const LpSolverBase::Expr &b)
737  {
738    LpSolverBase::Expr tmp(a);
[1364]739    tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
[1272]740    return tmp;
741  }
742  ///\e
743 
744  ///\relates LpSolverBase::Expr
745  ///
746  inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
[1273]747                                      const LpSolverBase::Value &b)
[1272]748  {
749    LpSolverBase::Expr tmp(a);
[1364]750    tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
[1272]751    return tmp;
752  }
753 
754  ///\e
755 
756  ///\relates LpSolverBase::Expr
757  ///
[1273]758  inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
[1272]759                                      const LpSolverBase::Expr &b)
760  {
761    LpSolverBase::Expr tmp(b);
[1364]762    tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
[1272]763    return tmp;
764  }
765  ///\e
766 
767  ///\relates LpSolverBase::Expr
768  ///
769  inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
[1273]770                                      const LpSolverBase::Value &b)
[1272]771  {
772    LpSolverBase::Expr tmp(a);
[1364]773    tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
[1272]774    return tmp;
775  }
776 
777  ///\e
778 
779  ///\relates LpSolverBase::Constr
780  ///
781  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
782                                         const LpSolverBase::Expr &f)
783  {
784    return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
785  }
786
787  ///\e
788 
789  ///\relates LpSolverBase::Constr
790  ///
[1273]791  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
[1272]792                                         const LpSolverBase::Expr &f)
793  {
794    return LpSolverBase::Constr(e,f);
795  }
796
797  ///\e
798 
799  ///\relates LpSolverBase::Constr
800  ///
801  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
[1273]802                                         const LpSolverBase::Value &f)
[1272]803  {
804    return LpSolverBase::Constr(e,f);
805  }
806
807  ///\e
808 
809  ///\relates LpSolverBase::Constr
810  ///
811  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
812                                         const LpSolverBase::Expr &f)
813  {
814    return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
815  }
816
817
818  ///\e
819 
820  ///\relates LpSolverBase::Constr
821  ///
[1273]822  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
[1272]823                                         const LpSolverBase::Expr &f)
824  {
825    return LpSolverBase::Constr(f,e);
826  }
827
828
829  ///\e
830 
831  ///\relates LpSolverBase::Constr
832  ///
833  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
[1273]834                                         const LpSolverBase::Value &f)
[1272]835  {
836    return LpSolverBase::Constr(f,e);
837  }
838
839  ///\e
840 
841  ///\relates LpSolverBase::Constr
842  ///
843  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
844                                         const LpSolverBase::Expr &f)
845  {
846    return LpSolverBase::Constr(0,e-f,0);
847  }
848
849  ///\e
850 
851  ///\relates LpSolverBase::Constr
852  ///
[1273]853  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
[1272]854                                         const LpSolverBase::Constr&c)
855  {
856    LpSolverBase::Constr tmp(c);
[1273]857    ///\todo Create an own exception type.
858    if(!isnan(tmp.lowerBound())) throw LogicError();
859    else tmp.lowerBound()=n;
[1272]860    return tmp;
861  }
862  ///\e
863 
864  ///\relates LpSolverBase::Constr
865  ///
866  inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
[1273]867                                         const LpSolverBase::Value &n)
[1272]868  {
869    LpSolverBase::Constr tmp(c);
[1273]870    ///\todo Create an own exception type.
871    if(!isnan(tmp.upperBound())) throw LogicError();
872    else tmp.upperBound()=n;
[1272]873    return tmp;
874  }
875
876  ///\e
877 
878  ///\relates LpSolverBase::Constr
879  ///
[1273]880  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
[1272]881                                         const LpSolverBase::Constr&c)
882  {
883    LpSolverBase::Constr tmp(c);
[1273]884    ///\todo Create an own exception type.
885    if(!isnan(tmp.upperBound())) throw LogicError();
886    else tmp.upperBound()=n;
[1272]887    return tmp;
888  }
889  ///\e
890 
891  ///\relates LpSolverBase::Constr
892  ///
893  inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
[1273]894                                         const LpSolverBase::Value &n)
[1272]895  {
896    LpSolverBase::Constr tmp(c);
[1273]897    ///\todo Create an own exception type.
898    if(!isnan(tmp.lowerBound())) throw LogicError();
899    else tmp.lowerBound()=n;
[1272]900    return tmp;
901  }
902
903
[1246]904} //namespace lemon
905
906#endif //LEMON_LP_BASE_H
Note: See TracBrowser for help on using the repository browser.