1 | /* -*- C++ -*- |
---|
2 | * src/lemon/radix_heap.h - Part of LEMON, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Combinatorial Optimization Research Group, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef LEMON_RADIX_HEAP_H |
---|
18 | #define LEMON_RADIX_HEAP_H |
---|
19 | |
---|
20 | ///\ingroup auxdat |
---|
21 | ///\file |
---|
22 | ///\brief Radix Heap implementation. |
---|
23 | |
---|
24 | #include <vector> |
---|
25 | #include <lemon/error.h> |
---|
26 | |
---|
27 | namespace lemon { |
---|
28 | |
---|
29 | /// \addtogroup auxdat |
---|
30 | /// @{ |
---|
31 | |
---|
32 | /// \brief Exception thrown by RadixHeap. |
---|
33 | /// |
---|
34 | /// This Exception is thrown when a smaller priority |
---|
35 | /// is inserted into the \e RadixHeap then the last time erased. |
---|
36 | /// \see RadixHeap |
---|
37 | /// \author Balazs Dezso |
---|
38 | |
---|
39 | class UnderFlowPriorityError : public RuntimeError { |
---|
40 | public: |
---|
41 | virtual const char* exceptionName() const { |
---|
42 | return "lemon::UnderFlowPriorityError"; |
---|
43 | } |
---|
44 | }; |
---|
45 | |
---|
46 | /// \brief A Radix Heap implementation. |
---|
47 | /// |
---|
48 | /// This class implements the \e radix \e heap data structure. A \e heap |
---|
49 | /// is a data structure for storing items with specified values called \e |
---|
50 | /// priorities in such a way that finding the item with minimum priority is |
---|
51 | /// efficient. This heap type can store only items with \e int priority. |
---|
52 | /// In a heap one can change the priority of an item, add or erase an |
---|
53 | /// item, but the priority cannot be decreased under the last removed |
---|
54 | /// item's priority. |
---|
55 | /// |
---|
56 | /// \param _Item Type of the items to be stored. |
---|
57 | /// \param _ItemIntMap A read and writable Item int map, used internally |
---|
58 | /// to handle the cross references. |
---|
59 | /// |
---|
60 | /// \see BinHeap |
---|
61 | /// \see Dijkstra |
---|
62 | /// \author Balazs Dezso |
---|
63 | |
---|
64 | template <typename _Item, typename _ItemIntMap> |
---|
65 | class RadixHeap { |
---|
66 | |
---|
67 | public: |
---|
68 | typedef _Item Item; |
---|
69 | typedef int Prio; |
---|
70 | typedef _ItemIntMap ItemIntMap; |
---|
71 | |
---|
72 | /// \brief Type to represent the items states. |
---|
73 | /// |
---|
74 | /// Each Item element have a state associated to it. It may be "in heap", |
---|
75 | /// "pre heap" or "post heap". The latter two are indifferent from the |
---|
76 | /// heap's point of view, but may be useful to the user. |
---|
77 | /// |
---|
78 | /// The ItemIntMap \e should be initialized in such way that it maps |
---|
79 | /// PRE_HEAP (-1) to any element to be put in the heap... |
---|
80 | enum state_enum { |
---|
81 | IN_HEAP = 0, |
---|
82 | PRE_HEAP = -1, |
---|
83 | POST_HEAP = -2 |
---|
84 | }; |
---|
85 | |
---|
86 | private: |
---|
87 | |
---|
88 | struct RadixItem { |
---|
89 | int prev, next, box; |
---|
90 | Item item; |
---|
91 | int prio; |
---|
92 | RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} |
---|
93 | }; |
---|
94 | |
---|
95 | struct RadixBox { |
---|
96 | int first; |
---|
97 | int min, size; |
---|
98 | RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
---|
99 | }; |
---|
100 | |
---|
101 | std::vector<RadixItem> data; |
---|
102 | std::vector<RadixBox> boxes; |
---|
103 | |
---|
104 | ItemIntMap &iim; |
---|
105 | |
---|
106 | |
---|
107 | public: |
---|
108 | /// \brief The constructor. |
---|
109 | /// |
---|
110 | /// The constructor. |
---|
111 | /// \param _iim should be given to the constructor, since it is used |
---|
112 | /// internally to handle the cross references. The value of the map |
---|
113 | /// should be PRE_HEAP (-1) for each element. |
---|
114 | explicit RadixHeap(ItemIntMap &_iim) : iim(_iim) { |
---|
115 | boxes.push_back(RadixBox(0, 1)); |
---|
116 | boxes.push_back(RadixBox(1, 1)); |
---|
117 | } |
---|
118 | |
---|
119 | /// \brief The constructor. |
---|
120 | /// |
---|
121 | /// The constructor. |
---|
122 | /// |
---|
123 | /// \param _iim It should be given to the constructor, since it is used |
---|
124 | /// internally to handle the cross references. The value of the map |
---|
125 | /// should be PRE_HEAP (-1) for each element. |
---|
126 | /// |
---|
127 | /// \param capacity It determines the initial capacity of the heap. |
---|
128 | RadixHeap(ItemIntMap &_iim, int capacity) : iim(_iim) { |
---|
129 | boxes.push_back(RadixBox(0, 1)); |
---|
130 | boxes.push_back(RadixBox(1, 1)); |
---|
131 | while (upper(boxes.back(), capacity)) { |
---|
132 | extend(); |
---|
133 | } |
---|
134 | } |
---|
135 | |
---|
136 | /// The number of items stored in the heap. |
---|
137 | /// |
---|
138 | /// \brief Returns the number of items stored in the heap. |
---|
139 | int size() const { return data.size(); } |
---|
140 | /// \brief Checks if the heap stores no items. |
---|
141 | /// |
---|
142 | /// Returns \c true if and only if the heap stores no items. |
---|
143 | bool empty() const { return data.empty(); } |
---|
144 | |
---|
145 | private: |
---|
146 | |
---|
147 | bool upper(int box, Prio prio) { |
---|
148 | return prio < boxes[box].min; |
---|
149 | } |
---|
150 | |
---|
151 | bool lower(int box, Prio prio) { |
---|
152 | return prio >= boxes[box].min + boxes[box].size; |
---|
153 | } |
---|
154 | |
---|
155 | /// \brief Remove item from the box list. |
---|
156 | void remove(int index) { |
---|
157 | if (data[index].prev >= 0) { |
---|
158 | data[data[index].prev].next = data[index].next; |
---|
159 | } else { |
---|
160 | boxes[data[index].box].first = data[index].next; |
---|
161 | } |
---|
162 | if (data[index].next >= 0) { |
---|
163 | data[data[index].next].prev = data[index].prev; |
---|
164 | } |
---|
165 | } |
---|
166 | |
---|
167 | /// \brief Insert item into the box list. |
---|
168 | void insert(int box, int index) { |
---|
169 | if (boxes[box].first == -1) { |
---|
170 | boxes[box].first = index; |
---|
171 | data[index].next = data[index].prev = -1; |
---|
172 | } else { |
---|
173 | data[index].next = boxes[box].first; |
---|
174 | data[boxes[box].first].prev = index; |
---|
175 | data[index].prev = -1; |
---|
176 | boxes[box].first = index; |
---|
177 | } |
---|
178 | data[index].box = box; |
---|
179 | } |
---|
180 | |
---|
181 | /// \brief Add a new box to the box list. |
---|
182 | void extend() { |
---|
183 | int min = boxes.back().min + boxes.back().size; |
---|
184 | int size = 2 * boxes.back().size; |
---|
185 | boxes.push_back(RadixBox(min, size)); |
---|
186 | } |
---|
187 | |
---|
188 | /// \brief Move an item up into the proper box. |
---|
189 | void bubble_up(int index) { |
---|
190 | if (!lower(data[index].box, data[index].prio)) return; |
---|
191 | remove(index); |
---|
192 | int box = findUp(data[index].box, data[index].prio); |
---|
193 | insert(box, index); |
---|
194 | } |
---|
195 | |
---|
196 | /// \brief Find up the proper box for the item with the given prio. |
---|
197 | int findUp(int start, int prio) { |
---|
198 | while (lower(start, prio)) { |
---|
199 | if (++start == (int)boxes.size()) { |
---|
200 | extend(); |
---|
201 | } |
---|
202 | } |
---|
203 | return start; |
---|
204 | } |
---|
205 | |
---|
206 | /// \brief Move an item down into the proper box. |
---|
207 | void bubble_down(int index) { |
---|
208 | if (!upper(data[index].box, data[index].prio)) return; |
---|
209 | remove(index); |
---|
210 | int box = findDown(data[index].box, data[index].prio); |
---|
211 | insert(box, index); |
---|
212 | } |
---|
213 | |
---|
214 | /// \brief Find up the proper box for the item with the given prio. |
---|
215 | int findDown(int start, int prio) { |
---|
216 | while (upper(start, prio)) { |
---|
217 | if (--start < 0) throw UnderFlowPriorityError(); |
---|
218 | } |
---|
219 | return start; |
---|
220 | } |
---|
221 | |
---|
222 | /// \brief Find the first not empty box. |
---|
223 | int findFirst() { |
---|
224 | int first = 0; |
---|
225 | while (boxes[first].first == -1) ++first; |
---|
226 | return first; |
---|
227 | } |
---|
228 | |
---|
229 | /// \brief Gives back the minimal prio of the box. |
---|
230 | int minValue(int box) { |
---|
231 | int min = data[boxes[box].first].prio; |
---|
232 | for (int k = boxes[box].first; k != -1; k = data[k].next) { |
---|
233 | if (data[k].prio < min) min = data[k].prio; |
---|
234 | } |
---|
235 | return min; |
---|
236 | } |
---|
237 | |
---|
238 | /// \brief Rearrange the items of the heap and makes the |
---|
239 | /// first box not empty. |
---|
240 | void moveDown() { |
---|
241 | int box = findFirst(); |
---|
242 | if (box == 0) return; |
---|
243 | int min = minValue(box); |
---|
244 | for (int i = 0; i <= box; ++i) { |
---|
245 | boxes[i].min = min; |
---|
246 | min += boxes[i].size; |
---|
247 | } |
---|
248 | int curr = boxes[box].first, next; |
---|
249 | while (curr != -1) { |
---|
250 | next = data[curr].next; |
---|
251 | bubble_down(curr); |
---|
252 | curr = next; |
---|
253 | } |
---|
254 | } |
---|
255 | |
---|
256 | void relocate_last(int index) { |
---|
257 | if (index != (int)data.size() - 1) { |
---|
258 | data[index] = data.back(); |
---|
259 | if (data[index].prev != -1) { |
---|
260 | data[data[index].prev].next = index; |
---|
261 | } else { |
---|
262 | boxes[data[index].box].first = index; |
---|
263 | } |
---|
264 | if (data[index].next != -1) { |
---|
265 | data[data[index].next].prev = index; |
---|
266 | } |
---|
267 | iim[data[index].item] = index; |
---|
268 | } |
---|
269 | data.pop_back(); |
---|
270 | } |
---|
271 | |
---|
272 | public: |
---|
273 | |
---|
274 | /// \brief Insert an item into the heap with the given heap. |
---|
275 | /// |
---|
276 | /// Adds \c i to the heap with priority \c p. |
---|
277 | /// \param i The item to insert. |
---|
278 | /// \param p The priority of the item. |
---|
279 | void push(const Item &i, const Prio &p) { |
---|
280 | int n = data.size(); |
---|
281 | iim.set(i, n); |
---|
282 | data.push_back(RadixItem(i, p)); |
---|
283 | while (lower(boxes.size() - 1, p)) { |
---|
284 | extend(); |
---|
285 | } |
---|
286 | int box = findDown(boxes.size() - 1, p); |
---|
287 | insert(box, n); |
---|
288 | } |
---|
289 | |
---|
290 | /// \brief Returns the item with minimum priority. |
---|
291 | /// |
---|
292 | /// This method returns the item with minimum priority. |
---|
293 | /// \pre The heap must be nonempty. |
---|
294 | Item top() const { |
---|
295 | const_cast<RadixHeap<Item, ItemIntMap>*>(this)->moveDown(); |
---|
296 | return data[boxes[0].first].item; |
---|
297 | } |
---|
298 | |
---|
299 | /// \brief Returns the minimum priority. |
---|
300 | /// |
---|
301 | /// It returns the minimum priority. |
---|
302 | /// \pre The heap must be nonempty. |
---|
303 | Prio prio() const { |
---|
304 | const_cast<RadixHeap<Item, ItemIntMap>*>(this)->moveDown(); |
---|
305 | return data[boxes[0].first].prio; |
---|
306 | } |
---|
307 | |
---|
308 | /// \brief Deletes the item with minimum priority. |
---|
309 | /// |
---|
310 | /// This method deletes the item with minimum priority. |
---|
311 | /// \pre The heap must be non-empty. |
---|
312 | void pop() { |
---|
313 | moveDown(); |
---|
314 | int index = boxes[0].first; |
---|
315 | iim[data[index].item] = POST_HEAP; |
---|
316 | remove(index); |
---|
317 | relocate_last(index); |
---|
318 | } |
---|
319 | |
---|
320 | /// \brief Deletes \c i from the heap. |
---|
321 | /// |
---|
322 | /// This method deletes item \c i from the heap, if \c i was |
---|
323 | /// already stored in the heap. |
---|
324 | /// \param i The item to erase. |
---|
325 | void erase(const Item &i) { |
---|
326 | int index = iim[i]; |
---|
327 | iim[i] = POST_HEAP; |
---|
328 | remove(index); |
---|
329 | relocate_last(index); |
---|
330 | } |
---|
331 | |
---|
332 | /// \brief Returns the priority of \c i. |
---|
333 | /// |
---|
334 | /// This function returns the priority of item \c i. |
---|
335 | /// \pre \c i must be in the heap. |
---|
336 | /// \param i The item. |
---|
337 | Prio operator[](const Item &i) const { |
---|
338 | int idx = iim[i]; |
---|
339 | return data[idx].prio; |
---|
340 | } |
---|
341 | |
---|
342 | /// \brief \c i gets to the heap with priority \c p independently |
---|
343 | /// if \c i was already there. |
---|
344 | /// |
---|
345 | /// This method calls \ref push(\c i, \c p) if \c i is not stored |
---|
346 | /// in the heap and sets the priority of \c i to \c p otherwise. |
---|
347 | /// It may throw an \e UnderFlowPriorityException. |
---|
348 | /// \param i The item. |
---|
349 | /// \param p The priority. |
---|
350 | void set(const Item &i, const Prio &p) { |
---|
351 | int idx = iim[i]; |
---|
352 | if( idx < 0 ) { |
---|
353 | push(i, p); |
---|
354 | } |
---|
355 | else if( p >= data[idx].prio ) { |
---|
356 | data[idx].prio = p; |
---|
357 | bubble_up(idx); |
---|
358 | } else { |
---|
359 | data[idx].prio = p; |
---|
360 | bubble_down(idx); |
---|
361 | } |
---|
362 | } |
---|
363 | |
---|
364 | |
---|
365 | /// \brief Decreases the priority of \c i to \c p. |
---|
366 | /// |
---|
367 | /// This method decreases the priority of item \c i to \c p. |
---|
368 | /// \pre \c i must be stored in the heap with priority at least \c p, and |
---|
369 | /// \c should be greater then the last removed item's priority. |
---|
370 | /// \param i The item. |
---|
371 | /// \param p The priority. |
---|
372 | void decrease(const Item &i, const Prio &p) { |
---|
373 | int idx = iim[i]; |
---|
374 | data[idx].prio = p; |
---|
375 | bubble_down(idx); |
---|
376 | } |
---|
377 | |
---|
378 | /// \brief Increases the priority of \c i to \c p. |
---|
379 | /// |
---|
380 | /// This method sets the priority of item \c i to \c p. |
---|
381 | /// \pre \c i must be stored in the heap with priority at most \c |
---|
382 | /// p relative to \c Compare. |
---|
383 | /// \param i The item. |
---|
384 | /// \param p The priority. |
---|
385 | void increase(const Item &i, const Prio &p) { |
---|
386 | int idx = iim[i]; |
---|
387 | data[idx].prio = p; |
---|
388 | bubble_up(idx); |
---|
389 | } |
---|
390 | |
---|
391 | /// \brief Returns if \c item is in, has already been in, or has |
---|
392 | /// never been in the heap. |
---|
393 | /// |
---|
394 | /// This method returns PRE_HEAP if \c item has never been in the |
---|
395 | /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
---|
396 | /// otherwise. In the latter case it is possible that \c item will |
---|
397 | /// get back to the heap again. |
---|
398 | /// \param i The item. |
---|
399 | state_enum state(const Item &i) const { |
---|
400 | int s = iim[i]; |
---|
401 | if( s >= 0 ) s = 0; |
---|
402 | return state_enum(s); |
---|
403 | } |
---|
404 | |
---|
405 | }; // class RadixHeap |
---|
406 | |
---|
407 | |
---|
408 | ///@} |
---|
409 | |
---|
410 | } // namespace lemon |
---|
411 | |
---|
412 | #endif // LEMON_RADIX_HEAP_H |
---|