1 | #ifndef LEMON_SIMANN_H |
---|
2 | #define LEMON_SIMANN_H |
---|
3 | |
---|
4 | /// \ingroup experimental |
---|
5 | /// \file |
---|
6 | /// \brief Simulated annealing framework. |
---|
7 | /// \author Akos Ladanyi |
---|
8 | |
---|
9 | #include <cstdlib> |
---|
10 | #include <cmath> |
---|
11 | #include <lemon/time_measure.h> |
---|
12 | |
---|
13 | namespace lemon { |
---|
14 | |
---|
15 | /// \addtogroup experimental |
---|
16 | /// @{ |
---|
17 | |
---|
18 | const double INFTY = 1e24; |
---|
19 | |
---|
20 | /*! \brief Simulated annealing base class. */ |
---|
21 | class SimAnnBase { |
---|
22 | public: |
---|
23 | class Controller; |
---|
24 | private: |
---|
25 | /*! Pointer to the controller. */ |
---|
26 | Controller *controller; |
---|
27 | protected: |
---|
28 | /*! \brief Cost of the current solution. */ |
---|
29 | double curr_cost; |
---|
30 | /*! \brief Cost of the best solution. */ |
---|
31 | double best_cost; |
---|
32 | /*! \brief Cost of the previous solution. */ |
---|
33 | double prev_cost; |
---|
34 | /*! \brief Cost of the solution preceding the previous one. */ |
---|
35 | double prev_prev_cost; |
---|
36 | |
---|
37 | /*! \brief Step to a neighbouring state. */ |
---|
38 | virtual void mutate() = 0; |
---|
39 | /*! \brief Reverts the last mutate(). */ |
---|
40 | virtual void revert() = 0; |
---|
41 | /*! \brief Saves the current solution as the best one. */ |
---|
42 | virtual void saveAsBest() = 0; |
---|
43 | public: |
---|
44 | /*! \brief Constructor. */ |
---|
45 | SimAnnBase() { |
---|
46 | best_cost = prev_cost = prev_prev_cost = INFTY; |
---|
47 | } |
---|
48 | /*! \brief Sets the controller class to use. */ |
---|
49 | void setController(Controller &_controller) { |
---|
50 | controller = &_controller; |
---|
51 | controller->setBase(this); |
---|
52 | } |
---|
53 | /*! \brief Returns the cost of the current solution. */ |
---|
54 | double getCurrCost() const { return curr_cost; } |
---|
55 | /*! \brief Returns the cost of the previous solution. */ |
---|
56 | double getPrevCost() const { return prev_cost; } |
---|
57 | /*! \brief Returns the cost of the best solution. */ |
---|
58 | double getBestCost() const { return best_cost; } |
---|
59 | /*! \brief Starts the annealing process. */ |
---|
60 | void run() { |
---|
61 | controller->init(); |
---|
62 | do { |
---|
63 | curr_cost=mutate(); |
---|
64 | if (controller->accept()) { |
---|
65 | controller->acceptEvent(); |
---|
66 | if (curr_cost < best_cost) { |
---|
67 | saveAsBest(); |
---|
68 | controller->improveEvent(); |
---|
69 | } |
---|
70 | } |
---|
71 | else { |
---|
72 | revert(); |
---|
73 | controller->rejectEvent(); |
---|
74 | } |
---|
75 | } while (controller->next()); |
---|
76 | } |
---|
77 | |
---|
78 | /*! \brief A base class for controllers. */ |
---|
79 | class Controller { |
---|
80 | public: |
---|
81 | /*! \brief Pointer to the simulated annealing base class. */ |
---|
82 | SimAnnBase *base; |
---|
83 | /*! \brief Initializes the controller. */ |
---|
84 | virtual void init() {} |
---|
85 | /*! \brief This is called when a neighbouring state gets accepted. */ |
---|
86 | virtual void acceptEvent() {} |
---|
87 | /*! \brief This is called when the accepted neighbouring state's cost is |
---|
88 | * less than the best found one's. |
---|
89 | */ |
---|
90 | virtual void improveEvent() {} |
---|
91 | /*! \brief This is called when a neighbouring state gets rejected. */ |
---|
92 | virtual void rejectEvent() {} |
---|
93 | /*! \brief Sets the simulated annealing base class to use. */ |
---|
94 | virtual void setBase(SimAnnBase *_base) { base = _base; } |
---|
95 | /*! \brief Decides whether to continue the annealing process or not. */ |
---|
96 | virtual bool next() = 0; |
---|
97 | /*! \brief Decides whether to accept the current solution or not. */ |
---|
98 | virtual bool accept() = 0; |
---|
99 | }; |
---|
100 | }; |
---|
101 | |
---|
102 | /*! \brief Simulated annealing class. */ |
---|
103 | template <typename E> |
---|
104 | class SimAnn : public SimAnnBase { |
---|
105 | private: |
---|
106 | /*! \brief Pointer to the current entity. */ |
---|
107 | E *curr_ent; |
---|
108 | /*! \brief Pointer to the best entity. */ |
---|
109 | E *best_ent; |
---|
110 | public: |
---|
111 | /*! \brief Constructor. */ |
---|
112 | SimAnn() : SimAnnBase() {} |
---|
113 | /*! \brief Sets the initial entity. */ |
---|
114 | void setEntity(E &ent) { |
---|
115 | curr_ent = new E(ent); |
---|
116 | best_ent = new E(ent); |
---|
117 | curr_cost = curr_ent->getCost(); |
---|
118 | } |
---|
119 | /*! \brief Returns the best found entity. */ |
---|
120 | E getBestEntity() { return *best_ent; } |
---|
121 | /*! \brief Step to a neighbouring state. */ |
---|
122 | void mutate() { |
---|
123 | prev_prev_cost = prev_cost; |
---|
124 | prev_cost = curr_cost; |
---|
125 | curr_ent->mutate(); |
---|
126 | curr_cost = curr_ent->getCost(); |
---|
127 | } |
---|
128 | /*! \brief Reverts the last mutate(). */ |
---|
129 | void revert() { |
---|
130 | curr_ent->revert(); |
---|
131 | curr_cost = prev_cost; |
---|
132 | prev_cost = prev_prev_cost; |
---|
133 | } |
---|
134 | /*! \brief Saves the current solution as the best one. */ |
---|
135 | void saveAsBest() { |
---|
136 | delete(best_ent); |
---|
137 | best_ent = new E(*curr_ent); |
---|
138 | best_cost = curr_cost; |
---|
139 | } |
---|
140 | }; |
---|
141 | |
---|
142 | /*! \brief Skeleton of an entity class. */ |
---|
143 | class EntitySkeleton { |
---|
144 | public: |
---|
145 | /*! \brief Returns the cost of the entity. */ |
---|
146 | double getCost() { return 0.0; } |
---|
147 | /*! \brief Makes a minor change to the entity. */ |
---|
148 | void mutate() {} |
---|
149 | /*! \brief Restores the entity to its previous state i.e. reverts the |
---|
150 | * effects of the last mutate(). |
---|
151 | */ |
---|
152 | void revert() {} |
---|
153 | }; |
---|
154 | |
---|
155 | /*! \brief A simple controller for the simulated annealing class. */ |
---|
156 | class SimpleController : public SimAnnBase::Controller { |
---|
157 | public: |
---|
158 | /*! \brief Number of iterations. */ |
---|
159 | long iter; |
---|
160 | /*! \brief Number of iterations which did not improve the solution since |
---|
161 | * the last improvement. */ |
---|
162 | long last_impr; |
---|
163 | /*! \brief Maximum number of iterations. */ |
---|
164 | long max_iter; |
---|
165 | /*! \brief Maximum number of iterations which do not improve the |
---|
166 | * solution. */ |
---|
167 | long max_no_impr; |
---|
168 | /*! \brief Temperature. */ |
---|
169 | double temp; |
---|
170 | /*! \brief Annealing factor. */ |
---|
171 | double ann_fact; |
---|
172 | /*! \brief Constructor. |
---|
173 | * \param _max_iter maximum number of iterations |
---|
174 | * \param _max_no_impr maximum number of consecutive iterations which do |
---|
175 | * not yield a better solution |
---|
176 | * \param _temp initial temperature |
---|
177 | * \param _ann_fact annealing factor |
---|
178 | */ |
---|
179 | SimpleController(long _max_iter = 500000, long _max_no_impr = 20000, |
---|
180 | double _temp = 1000.0, double _ann_fact = 0.9999) : iter(0), last_impr(0), |
---|
181 | max_iter(_max_iter), max_no_impr(_max_no_impr), temp(_temp), |
---|
182 | ann_fact(_ann_fact) {} |
---|
183 | /*! \brief This is called when a neighbouring state gets accepted. */ |
---|
184 | void acceptEvent() { |
---|
185 | iter++; |
---|
186 | } |
---|
187 | /*! \brief This is called when the accepted neighbouring state's cost is |
---|
188 | * less than the best found one's. |
---|
189 | */ |
---|
190 | void improveEvent() { |
---|
191 | last_impr = iter; |
---|
192 | } |
---|
193 | /*! \brief This is called when a neighbouring state gets rejected. */ |
---|
194 | void rejectEvent() { |
---|
195 | iter++; |
---|
196 | } |
---|
197 | /*! \brief Decides whether to continue the annealing process or not. Also |
---|
198 | * decreases the temperature. */ |
---|
199 | bool next() { |
---|
200 | temp *= ann_fact; |
---|
201 | bool quit = (iter > max_iter) || (iter - last_impr > max_no_impr); |
---|
202 | return !quit; |
---|
203 | } |
---|
204 | /*! \brief Decides whether to accept the current solution or not. */ |
---|
205 | bool accept() { |
---|
206 | double cost_diff = base->getPrevCost() - base->getCurrCost(); |
---|
207 | if (cost_diff < 0.0) { |
---|
208 | bool ret = drand48() <= exp(cost_diff / temp); |
---|
209 | return ret; |
---|
210 | } |
---|
211 | else { |
---|
212 | return true; |
---|
213 | } |
---|
214 | } |
---|
215 | }; |
---|
216 | |
---|
217 | /*! \brief A controller with preset running time for the simulated annealing |
---|
218 | * class. |
---|
219 | * |
---|
220 | * With this controller you can set the running time of the annealing |
---|
221 | * process in advance. It works the following way: the controller measures |
---|
222 | * a kind of divergence. The divergence is the difference of the average |
---|
223 | * cost of the recently found solutions the cost of the best found one. In |
---|
224 | * case this divergence is greater than a given threshold, then we decrease |
---|
225 | * the annealing factor, that is we cool the system faster. In case the |
---|
226 | * divergence is lower than the threshold, then we increase the temperature. |
---|
227 | * The threshold is a function of the elapsed time which reaches zero at the |
---|
228 | * desired end time. |
---|
229 | */ |
---|
230 | class AdvancedController : public SimAnnBase::Controller { |
---|
231 | private: |
---|
232 | Timer timer; |
---|
233 | /*! \param time the elapsed time in seconds */ |
---|
234 | virtual double threshold(double time) { |
---|
235 | return (-1.0) * start_threshold / end_time * time + start_threshold; |
---|
236 | } |
---|
237 | public: |
---|
238 | double alpha; |
---|
239 | double beta; |
---|
240 | double gamma; |
---|
241 | /*! \brief The time at the end of the algorithm. */ |
---|
242 | double end_time; |
---|
243 | /*! \brief The time at the start of the algorithm. */ |
---|
244 | double start_time; |
---|
245 | /*! \brief Starting threshold. */ |
---|
246 | double start_threshold; |
---|
247 | /*! \brief Average cost of recent solutions. */ |
---|
248 | double avg_cost; |
---|
249 | /*! \brief Temperature. */ |
---|
250 | double temp; |
---|
251 | /*! \brief Annealing factor. */ |
---|
252 | double ann_fact; |
---|
253 | /*! \brief Initial annealing factor. */ |
---|
254 | double init_ann_fact; |
---|
255 | bool warmup; |
---|
256 | /*! \brief Constructor. |
---|
257 | * \param _end_time running time in seconds |
---|
258 | * \param _alpha parameter used to calculate the running average |
---|
259 | * \param _beta parameter used to decrease the annealing factor |
---|
260 | * \param _gamma parameter used to increase the temperature |
---|
261 | * \param _ann_fact initial annealing factor |
---|
262 | */ |
---|
263 | AdvancedController(double _end_time, double _alpha = 0.2, |
---|
264 | double _beta = 0.9, double _gamma = 1.6, double _ann_fact = 0.9999) : |
---|
265 | alpha(_alpha), beta(_beta), gamma(_gamma), end_time(_end_time), |
---|
266 | ann_fact(_ann_fact), init_ann_fact(_ann_fact), warmup(true) {} |
---|
267 | void init() { |
---|
268 | avg_cost = base->getCurrCost(); |
---|
269 | } |
---|
270 | /*! \brief This is called when a neighbouring state gets accepted. */ |
---|
271 | void acceptEvent() { |
---|
272 | avg_cost = alpha * base->getCurrCost() + (1.0 - alpha) * avg_cost; |
---|
273 | if (warmup) { |
---|
274 | static int cnt = 0; |
---|
275 | cnt++; |
---|
276 | if (cnt >= 100) { |
---|
277 | // calculate starting threshold and starting temperature |
---|
278 | start_threshold = 5.0 * fabs(base->getBestCost() - avg_cost); |
---|
279 | temp = 10000.0; |
---|
280 | warmup = false; |
---|
281 | timer.reset(); |
---|
282 | } |
---|
283 | } |
---|
284 | } |
---|
285 | /*! \brief Decides whether to continue the annealing process or not. */ |
---|
286 | bool next() { |
---|
287 | if (warmup) { |
---|
288 | return true; |
---|
289 | } |
---|
290 | else { |
---|
291 | double elapsed_time = timer.getRealTime(); |
---|
292 | if (fabs(avg_cost - base->getBestCost()) > threshold(elapsed_time)) { |
---|
293 | // decrease the annealing factor |
---|
294 | ann_fact *= beta; |
---|
295 | } |
---|
296 | else { |
---|
297 | // increase the temperature |
---|
298 | temp *= gamma; |
---|
299 | // reset the annealing factor |
---|
300 | ann_fact = init_ann_fact; |
---|
301 | } |
---|
302 | temp *= ann_fact; |
---|
303 | return elapsed_time < end_time; |
---|
304 | } |
---|
305 | } |
---|
306 | /*! \brief Decides whether to accept the current solution or not. */ |
---|
307 | bool accept() { |
---|
308 | if (warmup) { |
---|
309 | // we accept eveything during the "warm up" phase |
---|
310 | return true; |
---|
311 | } |
---|
312 | else { |
---|
313 | double cost_diff = base->getPrevCost() - base->getCurrCost(); |
---|
314 | if (cost_diff < 0.0) { |
---|
315 | return (drand48() <= exp(cost_diff / temp)); |
---|
316 | } |
---|
317 | else { |
---|
318 | return true; |
---|
319 | } |
---|
320 | } |
---|
321 | } |
---|
322 | }; |
---|
323 | |
---|
324 | /// @} |
---|
325 | |
---|
326 | } |
---|
327 | |
---|
328 | #endif |
---|