[222] | 1 | // -*- C++ -*- |
---|
[242] | 2 | |
---|
[222] | 3 | /* |
---|
| 4 | *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> > |
---|
| 5 | * |
---|
| 6 | *Constructor: |
---|
| 7 | * |
---|
| 8 | *Dijkstra(Graph G, LengthMap length) |
---|
| 9 | * |
---|
| 10 | * |
---|
| 11 | *Methods: |
---|
| 12 | * |
---|
| 13 | *void run(Node s) |
---|
| 14 | * |
---|
| 15 | *T dist(Node v) : After run(s) was run, it returns the distance from s to v. |
---|
| 16 | * Returns T() if v is not reachable from s. |
---|
| 17 | * |
---|
| 18 | *Edge pred(Node v) : After run(s) was run, it returns the last |
---|
| 19 | * edge of a shortest s-v path. It is INVALID for s and for |
---|
| 20 | * the nodes not reachable from s. |
---|
| 21 | * |
---|
| 22 | *bool reached(Node v) : After run(s) was run, it is true iff v is |
---|
| 23 | * reachable from s |
---|
| 24 | * |
---|
| 25 | */ |
---|
| 26 | |
---|
| 27 | #ifndef HUGO_DIJKSTRA_H |
---|
| 28 | #define HUGO_DIJKSTRA_H |
---|
| 29 | |
---|
[242] | 30 | ///\file |
---|
| 31 | ///\brief Dijkstra algorithm. |
---|
| 32 | |
---|
[222] | 33 | #include <fib_heap.h> |
---|
[228] | 34 | #include <bin_heap.hh> |
---|
[222] | 35 | #include <invalid.h> |
---|
| 36 | |
---|
| 37 | namespace hugo { |
---|
| 38 | |
---|
| 39 | //Alpar: Changed the order of the parameters |
---|
[224] | 40 | |
---|
[229] | 41 | ///%Dijkstra algorithm class. |
---|
[224] | 42 | |
---|
[229] | 43 | ///This class provides an efficient implementation of %Dijkstra algorithm. |
---|
[224] | 44 | ///The edge lengths are passed to the algorithm using a |
---|
| 45 | ///\ref ReadMapSkeleton "readable map", |
---|
| 46 | ///so it is easy to change it to any kind of length. |
---|
| 47 | /// |
---|
| 48 | ///The type of the length is determined by the \c ValueType of the length map. |
---|
| 49 | /// |
---|
[242] | 50 | ///It is also possible to change the underlying priority heap. |
---|
[224] | 51 | /// |
---|
| 52 | ///\param Graph The graph type the algorithm runs on. |
---|
[242] | 53 | ///\param LengthMap This read-only |
---|
| 54 | ///EdgeMap |
---|
| 55 | ///determines the |
---|
[224] | 56 | ///lengths of the edges. It is read once for each edge, so the map |
---|
| 57 | ///may involve in relatively time consuming process to compute the edge |
---|
[242] | 58 | ///length if it is necessary. The default map type is |
---|
| 59 | ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>" |
---|
[229] | 60 | ///\param Heap The heap type used by the %Dijkstra |
---|
[224] | 61 | ///algorithm. The default |
---|
| 62 | ///is using \ref BinHeap "binary heap". |
---|
[242] | 63 | |
---|
| 64 | #ifdef DOXYGEN |
---|
| 65 | template <typename Graph, |
---|
| 66 | typename LengthMap, |
---|
| 67 | typename Heap> |
---|
| 68 | #else |
---|
[222] | 69 | template <typename Graph, |
---|
| 70 | typename LengthMap=typename Graph::EdgeMap<int>, |
---|
[228] | 71 | typename Heap=BinHeap <typename Graph::Node, |
---|
| 72 | typename LengthMap::ValueType, |
---|
| 73 | typename Graph::NodeMap<int> > > |
---|
[242] | 74 | #endif |
---|
[222] | 75 | class Dijkstra{ |
---|
| 76 | public: |
---|
[228] | 77 | typedef typename Graph::Node Node; |
---|
| 78 | typedef typename Graph::NodeIt NodeIt; |
---|
| 79 | typedef typename Graph::Edge Edge; |
---|
| 80 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 81 | |
---|
[222] | 82 | typedef typename LengthMap::ValueType ValueType; |
---|
[224] | 83 | typedef typename Graph::NodeMap<Edge> PredMap; |
---|
| 84 | typedef typename Graph::NodeMap<Node> PredNodeMap; |
---|
| 85 | typedef typename Graph::NodeMap<ValueType> DistMap; |
---|
[222] | 86 | |
---|
| 87 | private: |
---|
| 88 | const Graph& G; |
---|
| 89 | const LengthMap& length; |
---|
| 90 | PredMap predecessor; |
---|
| 91 | //In place of reach: |
---|
| 92 | PredNodeMap pred_node; |
---|
| 93 | DistMap distance; |
---|
| 94 | //I don't like this: |
---|
| 95 | // //FIXME: |
---|
| 96 | // typename Graph::NodeMap<bool> reach; |
---|
| 97 | // //typename Graph::NodeMap<int> reach; |
---|
| 98 | |
---|
| 99 | public : |
---|
| 100 | |
---|
| 101 | /* |
---|
| 102 | The distance of the nodes is 0. |
---|
| 103 | */ |
---|
| 104 | Dijkstra(Graph& _G, LengthMap& _length) : |
---|
| 105 | G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { } |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | void run(Node s); |
---|
| 109 | |
---|
[224] | 110 | ///The distance of a node from the source. |
---|
| 111 | |
---|
| 112 | ///Returns the distance of a node from the source. |
---|
| 113 | ///\pre \ref run() must be called before using this function. |
---|
[229] | 114 | ///\warning If node \c v in unreachable from the source the return value |
---|
[224] | 115 | ///of this funcion is undefined. |
---|
[222] | 116 | ValueType dist(Node v) const { return distance[v]; } |
---|
[224] | 117 | ///Returns the edges of the shortest path tree. |
---|
| 118 | |
---|
| 119 | ///For a node \c v it returns the last edge of the shortest path |
---|
[229] | 120 | ///from the source to \c v or INVALID if \c v is unreachable |
---|
| 121 | ///from the source. |
---|
[224] | 122 | ///\pre \ref run() must be called before using this function. |
---|
[222] | 123 | Edge pred(Node v) const { return predecessor[v]; } |
---|
[224] | 124 | ///Returns the nodes of the shortest paths. |
---|
| 125 | |
---|
| 126 | ///For a node \c v it returns the last but one node of the shortest path |
---|
[229] | 127 | ///from the source to \c v or INVALID if \c v is unreachable |
---|
| 128 | ///from the source. |
---|
[224] | 129 | ///\pre \ref run() must be called before using this function. |
---|
[222] | 130 | Node predNode(Node v) const { return pred_node[v]; } |
---|
| 131 | |
---|
[224] | 132 | ///Returns a reference to the NodeMap of distances. |
---|
| 133 | |
---|
| 134 | ///\pre \ref run() must be called before using this function. |
---|
| 135 | /// |
---|
[222] | 136 | const DistMap &distMap() const { return distance;} |
---|
[224] | 137 | ///Returns a reference to the shortest path tree map. |
---|
| 138 | |
---|
| 139 | ///Returns a reference to the NodeMap of the edges of the |
---|
| 140 | ///shortest path tree. |
---|
| 141 | ///\pre \ref run() must be called before using this function. |
---|
[222] | 142 | const PredMap &predMap() const { return predecessor;} |
---|
[224] | 143 | ///Returns a reference to the map of nodes of shortest paths. |
---|
| 144 | |
---|
| 145 | ///Returns a reference to the NodeMap of the last but one nodes of the |
---|
| 146 | ///shortest paths. |
---|
| 147 | ///\pre \ref run() must be called before using this function. |
---|
[222] | 148 | const PredNodeMap &predNodeMap() const { return pred_node;} |
---|
| 149 | |
---|
| 150 | // bool reached(Node v) { return reach[v]; } |
---|
[224] | 151 | |
---|
[242] | 152 | ///Checks if a node is reachable from the source. |
---|
[224] | 153 | |
---|
[229] | 154 | ///Returns \c true if \c v is reachable from the source. |
---|
| 155 | ///\warning the source node is reported to be unreached! |
---|
[224] | 156 | ///\todo Is this what we want? |
---|
| 157 | ///\pre \ref run() must be called before using this function. |
---|
[222] | 158 | /// |
---|
| 159 | bool reached(Node v) { return G.valid(predecessor[v]); } |
---|
| 160 | |
---|
| 161 | }; |
---|
| 162 | |
---|
| 163 | |
---|
[224] | 164 | // ********************************************************************** |
---|
| 165 | // IMPLEMENTATIONS |
---|
| 166 | // ********************************************************************** |
---|
[222] | 167 | |
---|
[229] | 168 | ///Runs %Dijkstra algorithm from node the source. |
---|
[224] | 169 | |
---|
[229] | 170 | ///This method runs the %Dijkstra algorithm from a source node \c s |
---|
| 171 | ///in order to |
---|
[224] | 172 | ///compute the |
---|
| 173 | ///shortest path to each node. The algorithm computes |
---|
| 174 | ///- The shortest path tree. |
---|
[229] | 175 | ///- The distance of each node from the source. |
---|
[222] | 176 | template <typename Graph, typename LengthMap, typename Heap > |
---|
| 177 | void Dijkstra<Graph,LengthMap,Heap>::run(Node s) { |
---|
| 178 | |
---|
| 179 | NodeIt u; |
---|
| 180 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) { |
---|
| 181 | predecessor.set(u,INVALID); |
---|
[224] | 182 | pred_node.set(u,INVALID); |
---|
[222] | 183 | // If a node is unreacheable, then why should be the dist=0? |
---|
| 184 | // distance.set(u,0); |
---|
| 185 | // reach.set(u,false); |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | //We don't need it at all. |
---|
| 189 | // //FIXME: |
---|
| 190 | // typename Graph::NodeMap<bool> scanned(G,false); |
---|
| 191 | // //typename Graph::NodeMap<int> scanned(G,false); |
---|
| 192 | typename Graph::NodeMap<int> heap_map(G,-1); |
---|
| 193 | |
---|
| 194 | Heap heap(heap_map); |
---|
| 195 | |
---|
| 196 | heap.push(s,0); |
---|
| 197 | // reach.set(s, true); |
---|
| 198 | |
---|
| 199 | while ( !heap.empty() ) { |
---|
| 200 | |
---|
| 201 | Node v=heap.top(); |
---|
| 202 | ValueType oldvalue=heap[v]; |
---|
| 203 | heap.pop(); |
---|
| 204 | distance.set(v, oldvalue); |
---|
| 205 | |
---|
| 206 | for(OutEdgeIt e(G,v); G.valid(e); G.next(e)) { |
---|
| 207 | Node w=G.head(e); |
---|
| 208 | |
---|
| 209 | switch(heap.state(w)) { |
---|
| 210 | case Heap::PRE_HEAP: |
---|
| 211 | // reach.set(w,true); |
---|
| 212 | heap.push(w,oldvalue+length[e]); |
---|
| 213 | predecessor.set(w,e); |
---|
| 214 | pred_node.set(w,v); |
---|
| 215 | break; |
---|
| 216 | case Heap::IN_HEAP: |
---|
| 217 | if ( oldvalue+length[e] < heap[w] ) { |
---|
| 218 | heap.decrease(w, oldvalue+length[e]); |
---|
| 219 | predecessor.set(w,e); |
---|
| 220 | pred_node.set(w,v); |
---|
| 221 | } |
---|
| 222 | break; |
---|
| 223 | case Heap::POST_HEAP: |
---|
| 224 | break; |
---|
| 225 | } |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | } //END OF NAMESPACE HUGO |
---|
| 231 | |
---|
| 232 | #endif |
---|
| 233 | |
---|
| 234 | |
---|