// -*- c++ -*- #ifndef HUGO_EMPTYGRAPH_H #define HUGO_EMPTYGRAPH_H #include /// The namespace of HugoLib namespace hugo { // @defgroup empty_graph The GraphSkeleton class // @{ /// An empty graph class. /// When you read this for the first time, /// please send an e-mail to alpar\@cs.elte.hu. /// /// This class provides all the common features of a graph structure, /// however completely without implementations and real data structures /// behind the interface. /// All graph algorithms should compile with this class, but it will not /// run properly, of course. /// /// It can be used for checking the interface compatibility, /// or it can serve as a skeleton of a new graph structure. /// /// Also, you will find here the full documentation of a certain graph /// feature, the documentation of a real graph imlementation /// like @ref ListGraph or /// @ref SmartGraph will just refer to this structure. class GraphSkeleton { public: /// The base type of the node iterators. /// This is the base type of each node iterators, /// thus each kind of node iterator will convert to this. class Node { public: /// @warning The default constructor sets the iterator /// to an undefined value. Node() {} //FIXME /// Invalid constructor \& conversion. /// This constructor initializes the iterator to be invalid. /// \sa Invalid for more details. Node(Invalid) {} //Node(const Node &) {} /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Node n) const { return true; } /// \sa \ref operator==(Node n) /// bool operator!=(Node n) const { return true; } bool operator<(Node n) const { return true; } }; /// This iterator goes through each node. /// This iterator goes through each node. /// Its usage is quite simple, for example you can count the number /// of nodes in graph \c G of type \c Graph like this: /// \code ///int count=0; ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++; /// \endcode class NodeIt : public Node { public: /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt() {} //FIXME /// Invalid constructor \& conversion. /// Initialize the iterator to be invalid /// \sa Invalid for more details. NodeIt(Invalid) {} /// Sets the iterator to the first node of \c G. NodeIt(const GraphSkeleton &G) {} /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt(const NodeIt &) {} }; /// The base type of the edge iterators. class Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. Edge() {} //FIXME /// Initialize the iterator to be invalid Edge(Invalid) {} /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Edge n) const { return true; } bool operator!=(Edge n) const { return true; } bool operator<(Edge n) const { return true; } }; /// This iterator goes trought the outgoing edges of a node. /// This iterator goes trought the \e outgoing edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c G of type \c Graph as follows. /// \code ///int count=0; ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++; /// \endcode class OutEdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. OutEdgeIt() {} /// Initialize the iterator to be invalid OutEdgeIt(Invalid) {} /// This constructor sets the iterator to first outgoing edge. /// This constructor set the iterator to the first outgoing edge of /// node ///@param n the node ///@param G the graph OutEdgeIt(const GraphSkeleton & G, Node n) {} }; /// This iterator goes trought the incoming edges of a node. /// This iterator goes trought the \e incoming edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c G of type \c Graph as follows. /// \code ///int count=0; ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++; /// \endcode class InEdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. InEdgeIt() {} /// Initialize the iterator to be invalid InEdgeIt(Invalid) {} InEdgeIt(const GraphSkeleton &, Node) {} }; // class SymEdgeIt : public Edge {}; /// This iterator goes through each edge. /// This iterator goes through each edge of a graph. /// Its usage is quite simple, for example you can count the number /// of edges in a graph \c G of type \c Graph as follows: /// \code ///int count=0; ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++; /// \endcode class EdgeIt : public Edge { public: /// @warning The default constructor sets the iterator /// to an undefined value. EdgeIt() {} /// Initialize the iterator to be invalid EdgeIt(Invalid) {} EdgeIt(const GraphSkeleton &) {} }; /// First node of the graph. /// \post \c i and the return value will be the first node. /// NodeIt &first(NodeIt &i) const { return i;} /// The first outgoing edge. InEdgeIt &first(InEdgeIt &i, Node n) const { return i;} /// The first incoming edge. OutEdgeIt &first(OutEdgeIt &i, Node n) const { return i;} // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} /// The first edge of the Graph. EdgeIt &first(EdgeIt &i) const { return i;} // Node getNext(Node) const {} // InEdgeIt getNext(InEdgeIt) const {} // OutEdgeIt getNext(OutEdgeIt) const {} // //SymEdgeIt getNext(SymEdgeIt) const {} // EdgeIt getNext(EdgeIt) const {} /// Go to the next node. NodeIt &next(NodeIt &i) const { return i;} /// Go to the next incoming edge. InEdgeIt &next(InEdgeIt &i) const { return i;} /// Go to the next outgoing edge. OutEdgeIt &next(OutEdgeIt &i) const { return i;} //SymEdgeIt &next(SymEdgeIt &) const {} /// Go to the next edge. EdgeIt &next(EdgeIt &i) const { return i;} ///Gives back the head node of an edge. Node head(Edge) const { return INVALID; } ///Gives back the tail node of an edge. Node tail(Edge) const { return INVALID; } // Node aNode(InEdgeIt) const {} // Node aNode(OutEdgeIt) const {} // Node aNode(SymEdgeIt) const {} // Node bNode(InEdgeIt) const {} // Node bNode(OutEdgeIt) const {} // Node bNode(SymEdgeIt) const {} /// Checks if a node iterator is valid ///\todo Maybe, it would be better if iterator converted to ///bool directly, as Jacint prefers. bool valid(const Node) const { return true;} /// Checks if an edge iterator is valid ///\todo Maybe, it would be better if iterator converted to ///bool directly, as Jacint prefers. bool valid(const Edge) const { return true;} ///Gives back the \e id of a node. ///\warning Not all graph structure provide this feature. /// int id(const Node) const { return 0;} ///Gives back the \e id of an edge. ///\warning Not all graph structure provide this feature. /// int id(const Edge) const { return 0;} //void setInvalid(Node &) const {}; //void setInvalid(Edge &) const {}; ///Add a new node to the graph. /// \return the new node. /// Node addNode() { return INVALID;} ///Add a new edge to the graph. ///Add a new edge to the graph with tail node \c tail ///and head node \c head. ///\return the new edge. Edge addEdge(Node tail, Node head) { return INVALID;} /// Deletes a node. ///\warning Not all graph structure provide this feature. /// void erase(Node n) {} /// Deletes an edge. ///\warning Not all graph structure provide this feature. /// void erase(Edge e) {} /// Reset the graph. /// This function deletes all edges and nodes of the graph. /// It also frees the memory allocated to store them. void clear() {} int nodeNum() const { return 0;} int edgeNum() const { return 0;} GraphSkeleton() {} GraphSkeleton(const GraphSkeleton &G) {} ///Read/write/reference map of the nodes to type \c T. ///Read/write/reference map of the nodes to type \c T. /// \sa MemoryMapSkeleton /// \todo We may need copy constructor /// \todo We may need conversion from other nodetype /// \todo We may need operator= /// \warning Making maps that can handle bool type (NodeMap) /// needs extra attention! template class NodeMap { public: typedef T ValueType; typedef Node KeyType; NodeMap(const GraphSkeleton &G) {} NodeMap(const GraphSkeleton &G, T t) {} template NodeMap(const NodeMap &m) {} /// Sets the value of a node. /// Sets the value associated with node \c i to the value \c t. /// void set(Node i, T t) {} /// Gets the value of a node. T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary T &operator[](Node i) {return *(T*)0;} const T &operator[](Node i) const {return *(T*)0;} /// Updates the map if the graph has been changed /// \todo Do we need this? /// void update() {} void update(T a) {} //FIXME: Is it necessary }; ///Read/write/reference map of the edges to type \c T. ///Read/write/reference map of the edges to type \c T. ///It behaves exactly in the same way as \ref NodeMap. /// \sa NodeMap /// \sa MemoryMapSkeleton /// \todo We may need copy constructor /// \todo We may need conversion from other edgetype /// \todo We may need operator= template class EdgeMap { public: typedef T ValueType; typedef Edge KeyType; EdgeMap(const GraphSkeleton &G) {} EdgeMap(const GraphSkeleton &G, T t) {} void set(Edge i, T t) {} T get(Edge i) const {return *(T*)0;} T &operator[](Edge i) {return *(T*)0;} void update() {} void update(T a) {} //FIXME: Is it necessary }; }; // @} } //namespace hugo // class EmptyBipGraph : public Graph Skeleton // { // class ANode {}; // class BNode {}; // ANode &next(ANode &) {} // BNode &next(BNode &) {} // ANode &getFirst(ANode &) const {} // BNode &getFirst(BNode &) const {} // enum NodeClass { A = 0, B = 1 }; // NodeClass getClass(Node n) {} // } #endif // HUGO_EMPTYGRAPH_H