1 | // -*- c++ -*- |
---|
2 | #ifndef HUGO_EMPTYGRAPH_H |
---|
3 | #define HUGO_EMPTYGRAPH_H |
---|
4 | |
---|
5 | #include <invalid.h> |
---|
6 | |
---|
7 | /// The namespace of HugoLib |
---|
8 | namespace hugo { |
---|
9 | |
---|
10 | // @defgroup empty_graph The GraphSkeleton class |
---|
11 | // @{ |
---|
12 | |
---|
13 | /// An empty graph class. |
---|
14 | |
---|
15 | /// This class provides all the common features of a graph structure, |
---|
16 | /// however completely without implementations and real data structures |
---|
17 | /// behind the interface. |
---|
18 | /// All graph algorithms should compile with this class, but it will not |
---|
19 | /// run properly, of course. |
---|
20 | /// |
---|
21 | /// It can be used for checking the interface compatibility, |
---|
22 | /// or it can serve as a skeleton of a new graph structure. |
---|
23 | /// |
---|
24 | /// Also, you will find here the full documentation of a certain graph |
---|
25 | /// feature, the documentation of a real graph imlementation |
---|
26 | /// like @ref ListGraph or |
---|
27 | /// @ref SmartGraph will just refer to this structure. |
---|
28 | class GraphSkeleton |
---|
29 | { |
---|
30 | public: |
---|
31 | |
---|
32 | /// The base type of the node iterators. |
---|
33 | |
---|
34 | /// This is the base type of each node iterators, |
---|
35 | /// thus each kind of node iterator will convert to this. |
---|
36 | class Node { |
---|
37 | public: |
---|
38 | /// @warning The default constructor sets the iterator |
---|
39 | /// to an undefined value. |
---|
40 | Node() {} //FIXME |
---|
41 | /// Invalid constructor \& conversion. |
---|
42 | |
---|
43 | /// This constructor initializes the iterator to be invalid. |
---|
44 | /// \sa Invalid for more details. |
---|
45 | |
---|
46 | Node(Invalid) {} |
---|
47 | //Node(const Node &) {} |
---|
48 | |
---|
49 | /// Two iterators are equal if and only if they point to the |
---|
50 | /// same object or both are invalid. |
---|
51 | bool operator==(Node n) const { return true; } |
---|
52 | |
---|
53 | /// \sa \ref operator==(Node n) |
---|
54 | /// |
---|
55 | bool operator!=(Node n) const { return true; } |
---|
56 | |
---|
57 | bool operator<(Node n) const { return true; } |
---|
58 | }; |
---|
59 | |
---|
60 | /// This iterator goes through each node. |
---|
61 | |
---|
62 | /// This iterator goes through each node. |
---|
63 | /// Its usage is quite simple, for example you can count the number |
---|
64 | /// of nodes in graph \c G of type \c Graph like this: |
---|
65 | /// \code |
---|
66 | ///int count=0; |
---|
67 | ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++; |
---|
68 | /// \endcode |
---|
69 | class NodeIt : public Node { |
---|
70 | public: |
---|
71 | /// @warning The default constructor sets the iterator |
---|
72 | /// to an undefined value. |
---|
73 | NodeIt() {} //FIXME |
---|
74 | /// Invalid constructor \& conversion. |
---|
75 | |
---|
76 | /// Initialize the iterator to be invalid |
---|
77 | /// \sa Invalid for more details. |
---|
78 | NodeIt(Invalid) {} |
---|
79 | /// Sets the iterator to the first node of \c G. |
---|
80 | NodeIt(const GraphSkeleton &G) {} |
---|
81 | /// @warning The default constructor sets the iterator |
---|
82 | /// to an undefined value. |
---|
83 | NodeIt(const NodeIt &) {} |
---|
84 | }; |
---|
85 | |
---|
86 | |
---|
87 | /// The base type of the edge iterators. |
---|
88 | class Edge { |
---|
89 | public: |
---|
90 | /// @warning The default constructor sets the iterator |
---|
91 | /// to an undefined value. |
---|
92 | Edge() {} //FIXME |
---|
93 | /// Initialize the iterator to be invalid |
---|
94 | Edge(Invalid) {} |
---|
95 | /// Two iterators are equal if and only if they point to the |
---|
96 | /// same object or both are invalid. |
---|
97 | bool operator==(Edge n) const { return true; } |
---|
98 | bool operator!=(Edge n) const { return true; } |
---|
99 | bool operator<(Edge n) const { return true; } |
---|
100 | }; |
---|
101 | |
---|
102 | /// This iterator goes trought the outgoing edges of a node. |
---|
103 | |
---|
104 | /// This iterator goes trought the \e outgoing edges of a certain node |
---|
105 | /// of a graph. |
---|
106 | /// Its usage is quite simple, for example you can count the number |
---|
107 | /// of outgoing edges of a node \c n |
---|
108 | /// in graph \c G of type \c Graph as follows. |
---|
109 | /// \code |
---|
110 | ///int count=0; |
---|
111 | ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
112 | /// \endcode |
---|
113 | |
---|
114 | class OutEdgeIt : public Edge { |
---|
115 | public: |
---|
116 | /// @warning The default constructor sets the iterator |
---|
117 | /// to an undefined value. |
---|
118 | OutEdgeIt() {} |
---|
119 | /// Initialize the iterator to be invalid |
---|
120 | OutEdgeIt(Invalid) {} |
---|
121 | /// This constructor sets the iterator to first outgoing edge. |
---|
122 | |
---|
123 | /// This constructor set the iterator to the first outgoing edge of |
---|
124 | /// node |
---|
125 | ///@param n the node |
---|
126 | ///@param G the graph |
---|
127 | OutEdgeIt(const GraphSkeleton & G, Node n) {} |
---|
128 | }; |
---|
129 | |
---|
130 | /// This iterator goes trought the incoming edges of a node. |
---|
131 | |
---|
132 | /// This iterator goes trought the \e incoming edges of a certain node |
---|
133 | /// of a graph. |
---|
134 | /// Its usage is quite simple, for example you can count the number |
---|
135 | /// of outgoing edges of a node \c n |
---|
136 | /// in graph \c G of type \c Graph as follows. |
---|
137 | /// \code |
---|
138 | ///int count=0; |
---|
139 | ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
---|
140 | /// \endcode |
---|
141 | |
---|
142 | class InEdgeIt : public Edge { |
---|
143 | public: |
---|
144 | /// @warning The default constructor sets the iterator |
---|
145 | /// to an undefined value. |
---|
146 | InEdgeIt() {} |
---|
147 | /// Initialize the iterator to be invalid |
---|
148 | InEdgeIt(Invalid) {} |
---|
149 | InEdgeIt(const GraphSkeleton &, Node) {} |
---|
150 | }; |
---|
151 | // class SymEdgeIt : public Edge {}; |
---|
152 | |
---|
153 | /// This iterator goes through each edge. |
---|
154 | |
---|
155 | /// This iterator goes through each edge of a graph. |
---|
156 | /// Its usage is quite simple, for example you can count the number |
---|
157 | /// of edges in a graph \c G of type \c Graph as follows: |
---|
158 | /// \code |
---|
159 | ///int count=0; |
---|
160 | ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++; |
---|
161 | /// \endcode |
---|
162 | class EdgeIt : public Edge { |
---|
163 | public: |
---|
164 | /// @warning The default constructor sets the iterator |
---|
165 | /// to an undefined value. |
---|
166 | EdgeIt() {} |
---|
167 | /// Initialize the iterator to be invalid |
---|
168 | EdgeIt(Invalid) {} |
---|
169 | EdgeIt(const GraphSkeleton &) {} |
---|
170 | }; |
---|
171 | |
---|
172 | /// First node of the graph. |
---|
173 | |
---|
174 | /// \post \c i and the return value will be the first node. |
---|
175 | /// |
---|
176 | NodeIt &first(NodeIt &i) const { return i;} |
---|
177 | |
---|
178 | /// The first outgoing edge. |
---|
179 | InEdgeIt &first(InEdgeIt &i, Node n) const { return i;} |
---|
180 | /// The first incoming edge. |
---|
181 | OutEdgeIt &first(OutEdgeIt &i, Node n) const { return i;} |
---|
182 | // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
---|
183 | /// The first edge of the Graph. |
---|
184 | EdgeIt &first(EdgeIt &i) const { return i;} |
---|
185 | |
---|
186 | // Node getNext(Node) const {} |
---|
187 | // InEdgeIt getNext(InEdgeIt) const {} |
---|
188 | // OutEdgeIt getNext(OutEdgeIt) const {} |
---|
189 | // //SymEdgeIt getNext(SymEdgeIt) const {} |
---|
190 | // EdgeIt getNext(EdgeIt) const {} |
---|
191 | |
---|
192 | /// Go to the next node. |
---|
193 | NodeIt &next(NodeIt &i) const { return i;} |
---|
194 | /// Go to the next incoming edge. |
---|
195 | InEdgeIt &next(InEdgeIt &i) const { return i;} |
---|
196 | /// Go to the next outgoing edge. |
---|
197 | OutEdgeIt &next(OutEdgeIt &i) const { return i;} |
---|
198 | //SymEdgeIt &next(SymEdgeIt &) const {} |
---|
199 | /// Go to the next edge. |
---|
200 | EdgeIt &next(EdgeIt &i) const { return i;} |
---|
201 | |
---|
202 | ///Gives back the head node of an edge. |
---|
203 | Node head(Edge) const { return INVALID; } |
---|
204 | ///Gives back the tail node of an edge. |
---|
205 | Node tail(Edge) const { return INVALID; } |
---|
206 | |
---|
207 | // Node aNode(InEdgeIt) const {} |
---|
208 | // Node aNode(OutEdgeIt) const {} |
---|
209 | // Node aNode(SymEdgeIt) const {} |
---|
210 | |
---|
211 | // Node bNode(InEdgeIt) const {} |
---|
212 | // Node bNode(OutEdgeIt) const {} |
---|
213 | // Node bNode(SymEdgeIt) const {} |
---|
214 | |
---|
215 | /// Checks if a node iterator is valid |
---|
216 | |
---|
217 | ///\todo Maybe, it would be better if iterator converted to |
---|
218 | ///bool directly, as Jacint prefers. |
---|
219 | bool valid(const Node) const { return true;} |
---|
220 | /// Checks if an edge iterator is valid |
---|
221 | |
---|
222 | ///\todo Maybe, it would be better if iterator converted to |
---|
223 | ///bool directly, as Jacint prefers. |
---|
224 | bool valid(const Edge) const { return true;} |
---|
225 | |
---|
226 | ///Gives back the \e id of a node. |
---|
227 | |
---|
228 | ///\warning Not all graph structure provide this feature. |
---|
229 | /// |
---|
230 | int id(const Node) const { return 0;} |
---|
231 | ///Gives back the \e id of an edge. |
---|
232 | |
---|
233 | ///\warning Not all graph structure provide this feature. |
---|
234 | /// |
---|
235 | int id(const Edge) const { return 0;} |
---|
236 | |
---|
237 | //void setInvalid(Node &) const {}; |
---|
238 | //void setInvalid(Edge &) const {}; |
---|
239 | |
---|
240 | ///Add a new node to the graph. |
---|
241 | |
---|
242 | /// \return the new node. |
---|
243 | /// |
---|
244 | Node addNode() { return INVALID;} |
---|
245 | ///Add a new edge to the graph. |
---|
246 | |
---|
247 | ///Add a new edge to the graph with tail node \c tail |
---|
248 | ///and head node \c head. |
---|
249 | ///\return the new edge. |
---|
250 | Edge addEdge(Node tail, Node head) { return INVALID;} |
---|
251 | |
---|
252 | /// Deletes a node. |
---|
253 | |
---|
254 | ///\warning Not all graph structure provide this feature. |
---|
255 | /// |
---|
256 | void erase(Node n) {} |
---|
257 | /// Deletes an edge. |
---|
258 | |
---|
259 | ///\warning Not all graph structure provide this feature. |
---|
260 | /// |
---|
261 | void erase(Edge e) {} |
---|
262 | |
---|
263 | /// Reset the graph. |
---|
264 | |
---|
265 | /// This function deletes all edges and nodes of the graph. |
---|
266 | /// It also frees the memory allocated to store them. |
---|
267 | void clear() {} |
---|
268 | |
---|
269 | int nodeNum() const { return 0;} |
---|
270 | int edgeNum() const { return 0;} |
---|
271 | |
---|
272 | GraphSkeleton() {} |
---|
273 | GraphSkeleton(const GraphSkeleton &G) {} |
---|
274 | |
---|
275 | |
---|
276 | |
---|
277 | ///Read/write/reference map of the nodes to type \c T. |
---|
278 | |
---|
279 | ///Read/write/reference map of the nodes to type \c T. |
---|
280 | /// \sa MemoryMapSkeleton |
---|
281 | /// \todo We may need copy constructor |
---|
282 | /// \todo We may need conversion from other nodetype |
---|
283 | /// \todo We may need operator= |
---|
284 | |
---|
285 | template<class T> class NodeMap |
---|
286 | { |
---|
287 | public: |
---|
288 | typedef T ValueType; |
---|
289 | typedef Node KeyType; |
---|
290 | |
---|
291 | NodeMap(const GraphSkeleton &G) {} |
---|
292 | NodeMap(const GraphSkeleton &G, T t) {} |
---|
293 | |
---|
294 | template<typename TT> NodeMap(const NodeMap<TT> &m) {} |
---|
295 | |
---|
296 | /// Sets the value of a node. |
---|
297 | |
---|
298 | /// Sets the value associated with node \c i to the value \c t. |
---|
299 | /// |
---|
300 | void set(Node i, T t) {} |
---|
301 | /// Gets the value of a node. |
---|
302 | T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary |
---|
303 | T &operator[](Node i) {return *(T*)0;} |
---|
304 | const T &operator[](Node i) const {return *(T*)0;} |
---|
305 | |
---|
306 | /// Updates the map if the graph has been changed |
---|
307 | |
---|
308 | /// \todo Do we need this? |
---|
309 | /// |
---|
310 | void update() {} |
---|
311 | void update(T a) {} //FIXME: Is it necessary |
---|
312 | }; |
---|
313 | |
---|
314 | ///Read/write/reference map of the edges to type \c T. |
---|
315 | |
---|
316 | ///Read/write/reference map of the edges to type \c T. |
---|
317 | ///It behaves exactly in the same way as \ref NodeMap. |
---|
318 | /// \sa NodeMap |
---|
319 | /// \sa MemoryMapSkeleton |
---|
320 | /// \todo We may need copy constructor |
---|
321 | /// \todo We may need conversion from other edgetype |
---|
322 | /// \todo We may need operator= |
---|
323 | template<class T> class EdgeMap |
---|
324 | { |
---|
325 | public: |
---|
326 | typedef T ValueType; |
---|
327 | typedef Edge KeyType; |
---|
328 | |
---|
329 | EdgeMap(const GraphSkeleton &G) {} |
---|
330 | EdgeMap(const GraphSkeleton &G, T t) {} |
---|
331 | |
---|
332 | void set(Edge i, T t) {} |
---|
333 | T get(Edge i) const {return *(T*)0;} |
---|
334 | T &operator[](Edge i) {return *(T*)0;} |
---|
335 | |
---|
336 | void update() {} |
---|
337 | void update(T a) {} //FIXME: Is it necessary |
---|
338 | }; |
---|
339 | }; |
---|
340 | |
---|
341 | // @} |
---|
342 | |
---|
343 | } //namespace hugo |
---|
344 | |
---|
345 | |
---|
346 | |
---|
347 | // class EmptyBipGraph : public Graph Skeleton |
---|
348 | // { |
---|
349 | // class ANode {}; |
---|
350 | // class BNode {}; |
---|
351 | |
---|
352 | // ANode &next(ANode &) {} |
---|
353 | // BNode &next(BNode &) {} |
---|
354 | |
---|
355 | // ANode &getFirst(ANode &) const {} |
---|
356 | // BNode &getFirst(BNode &) const {} |
---|
357 | |
---|
358 | // enum NodeClass { A = 0, B = 1 }; |
---|
359 | // NodeClass getClass(Node n) {} |
---|
360 | |
---|
361 | // } |
---|
362 | |
---|
363 | #endif // HUGO_EMPTYGRAPH_H |
---|