COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/work/alpar/list_graph.h @ 406:e8377ac921b6

Last change on this file since 406:e8377ac921b6 was 406:e8377ac921b6, checked in by Alpar Juttner, 20 years ago

Docs are now divided into modules.

File size: 44.3 KB
Line 
1// -*- mode:C++ -*-
2
3#ifndef HUGO_LIST_GRAPH_H
4#define HUGO_LIST_GRAPH_H
5
6///ingroup graphs
7///\file
8///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
9
10#include <vector>
11#include <limits.h>
12
13#include "invalid.h"
14
15namespace hugo {
16
17/// \addtogroup graphs
18/// @{
19
20  class SymListGraph;
21
22  ///A list graph class.
23
24  ///This is a simple and fast erasable graph implementation.
25  ///
26  ///It conforms to the graph interface documented under
27  ///the description of \ref GraphSkeleton.
28  ///\sa \ref GraphSkeleton.
29  class ListGraph {
30
31    //Nodes are double linked.
32    //The free nodes are only single linked using the "next" field.
33    struct NodeT
34    {
35      int first_in,first_out;
36      int prev, next;
37      //      NodeT() {}
38    };
39    //Edges are double linked.
40    //The free edges are only single linked using the "next_in" field.
41    struct EdgeT
42    {
43      int head, tail;
44      int prev_in, prev_out;
45      int next_in, next_out;
46      //FIXME: is this necessary?
47      //      EdgeT() : next_in(-1), next_out(-1) prev_in(-1), prev_out(-1) {} 
48    };
49
50    std::vector<NodeT> nodes;
51    //The first node
52    int first_node;
53    //The first free node
54    int first_free_node;
55    std::vector<EdgeT> edges;
56    //The first free edge
57    int first_free_edge;
58   
59  protected:
60   
61    template <typename Key> class DynMapBase
62    {
63    protected:
64      const ListGraph* G;
65    public:
66      virtual void add(const Key k) = NULL;
67      virtual void erase(const Key k) = NULL;
68      DynMapBase(const ListGraph &_G) : G(&_G) {}
69      virtual ~DynMapBase() {}
70      friend class ListGraph;
71    };
72   
73  public:
74    template <typename T> class EdgeMap;
75    template <typename T> class NodeMap;
76   
77    class Node;
78    class Edge;
79
80    //  protected:
81    // HELPME:
82  protected:
83    ///\bug It must be public because of SymEdgeMap.
84    ///
85    mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
86    ///\bug It must be public because of SymEdgeMap.
87    ///
88    mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
89   
90  public:
91
92    class NodeIt;
93    class EdgeIt;
94    class OutEdgeIt;
95    class InEdgeIt;
96   
97    template <typename T> class NodeMap;
98    template <typename T> class EdgeMap;
99   
100  public:
101
102    ListGraph() : nodes(), first_node(-1),
103                  first_free_node(-1), edges(), first_free_edge(-1) {}
104    ListGraph(const ListGraph &_g) : nodes(_g.nodes), first_node(_g.first_node),
105                                     first_free_node(_g.first_free_node),
106                                     edges(_g.edges),
107                                     first_free_edge(_g.first_free_edge) {}
108   
109    ~ListGraph()
110    {
111      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
112          i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
113      for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
114          i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
115    }
116
117    int nodeNum() const { return nodes.size(); }  //FIXME: What is this?
118    int edgeNum() const { return edges.size(); }  //FIXME: What is this?
119
120    ///\bug This function does something different than
121    ///its name would suggests...
122    int maxNodeId() const { return nodes.size(); }  //FIXME: What is this?
123    ///\bug This function does something different than
124    ///its name would suggests...
125    int maxEdgeId() const { return edges.size(); }  //FIXME: What is this?
126
127    Node tail(Edge e) const { return edges[e.n].tail; }
128    Node head(Edge e) const { return edges[e.n].head; }
129
130    Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
131    Node aNode(InEdgeIt e) const { return edges[e.n].head; }
132
133    Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
134    Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
135
136    NodeIt& first(NodeIt& v) const {
137      v=NodeIt(*this); return v; }
138    EdgeIt& first(EdgeIt& e) const {
139      e=EdgeIt(*this); return e; }
140    OutEdgeIt& first(OutEdgeIt& e, const Node v) const {
141      e=OutEdgeIt(*this,v); return e; }
142    InEdgeIt& first(InEdgeIt& e, const Node v) const {
143      e=InEdgeIt(*this,v); return e; }
144
145//     template< typename It >
146//     It first() const { It e; first(e); return e; }
147
148//     template< typename It >
149//     It first(Node v) const { It e; first(e,v); return e; }
150
151    bool valid(Edge e) const { return e.n!=-1; }
152    bool valid(Node n) const { return n.n!=-1; }
153   
154    void setInvalid(Edge &e) { e.n=-1; }
155    void setInvalid(Node &n) { n.n=-1; }
156   
157    template <typename It> It getNext(It it) const
158    { It tmp(it); return next(tmp); }
159
160    NodeIt& next(NodeIt& it) const {
161      it.n=nodes[it.n].next;
162      return it;
163    }
164    OutEdgeIt& next(OutEdgeIt& it) const
165    { it.n=edges[it.n].next_out; return it; }
166    InEdgeIt& next(InEdgeIt& it) const
167    { it.n=edges[it.n].next_in; return it; }
168    EdgeIt& next(EdgeIt& it) const {
169      if(edges[it.n].next_in!=-1) {
170        it.n=edges[it.n].next_in;
171      }
172      else {
173        int n;
174        for(n=nodes[edges[it.n].head].next;
175            n!=-1 && nodes[n].first_in == -1;
176            n = nodes[n].next) ;
177        it.n = (n==-1)?-1:nodes[n].first_in;
178      }
179      return it;
180    }
181
182    int id(Node v) const { return v.n; }
183    int id(Edge e) const { return e.n; }
184
185    /// Adds a new node to the graph.
186
187    /// \todo It adds the nodes in a reversed order.
188    /// (i.e. the lastly added node becomes the first.)
189    Node addNode() {
190      int n;
191     
192      if(first_free_node==-1)
193        {
194          n = nodes.size();
195          nodes.push_back(NodeT());
196        }
197      else {
198        n = first_free_node;
199        first_free_node = nodes[n].next;
200      }
201     
202      nodes[n].next = first_node;
203      if(first_node != -1) nodes[first_node].prev = n;
204      first_node = n;
205      nodes[n].prev = -1;
206     
207      nodes[n].first_in = nodes[n].first_out = -1;
208     
209      Node nn; nn.n=n;
210
211      //Update dynamic maps
212      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
213          i!=dyn_node_maps.end(); ++i) (**i).add(nn);
214
215      return nn;
216    }
217   
218    Edge addEdge(Node u, Node v) {
219      int n;
220     
221      if(first_free_edge==-1)
222        {
223          n = edges.size();
224          edges.push_back(EdgeT());
225        }
226      else {
227        n = first_free_edge;
228        first_free_edge = edges[n].next_in;
229      }
230     
231      edges[n].tail = u.n; edges[n].head = v.n;
232
233      edges[n].next_out = nodes[u.n].first_out;
234      if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n;
235      edges[n].next_in = nodes[v.n].first_in;
236      if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n;
237      edges[n].prev_in = edges[n].prev_out = -1;
238       
239      nodes[u.n].first_out = nodes[v.n].first_in = n;
240
241      Edge e; e.n=n;
242
243      //Update dynamic maps
244      for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
245          i!=dyn_edge_maps.end(); ++i) (**i).add(e);
246
247      return e;
248    }
249
250  private:
251    void eraseEdge(int n) {
252     
253      if(edges[n].next_in!=-1)
254        edges[edges[n].next_in].prev_in = edges[n].prev_in;
255      if(edges[n].prev_in!=-1)
256        edges[edges[n].prev_in].next_in = edges[n].next_in;
257      else nodes[edges[n].head].first_in = edges[n].next_in;
258     
259      if(edges[n].next_out!=-1)
260        edges[edges[n].next_out].prev_out = edges[n].prev_out;
261      if(edges[n].prev_out!=-1)
262        edges[edges[n].prev_out].next_out = edges[n].next_out;
263      else nodes[edges[n].tail].first_out = edges[n].next_out;
264     
265      edges[n].next_in = first_free_edge;
266      first_free_edge = -1;     
267
268      //Update dynamic maps
269      Edge e; e.n=n;
270      for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
271          i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
272    }
273     
274  public:
275
276    void erase(Node nn) {
277      int n=nn.n;
278     
279      int m;
280      while((m=nodes[n].first_in)!=-1) eraseEdge(m);
281      while((m=nodes[n].first_out)!=-1) eraseEdge(m);
282
283      if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
284      if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
285      else first_node = nodes[n].next;
286     
287      nodes[n].next = first_free_node;
288      first_free_node = n;
289
290      //Update dynamic maps
291      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
292          i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
293    }
294   
295    void erase(Edge e) { eraseEdge(e.n); }
296
297    ///\bug Dynamic maps must be updated!
298    ///
299    void clear() {
300      nodes.clear();edges.clear();
301      first_node=first_free_node=first_free_edge=-1;
302    }
303
304    class Node {
305      friend class ListGraph;
306      template <typename T> friend class NodeMap;
307       
308      friend class Edge;
309      friend class OutEdgeIt;
310      friend class InEdgeIt;
311      friend class SymEdge;
312
313    protected:
314      int n;
315      friend int ListGraph::id(Node v) const;
316      Node(int nn) {n=nn;}
317    public:
318      Node() {}
319      Node (Invalid i) { n=-1; }
320      bool operator==(const Node i) const {return n==i.n;}
321      bool operator!=(const Node i) const {return n!=i.n;}
322      bool operator<(const Node i) const {return n<i.n;}
323    };
324   
325    class NodeIt : public Node {
326      friend class ListGraph;
327    public:
328      NodeIt() : Node() { }
329      NodeIt(Invalid i) : Node(i) { }
330      NodeIt(const ListGraph& G) : Node(G.first_node) { }
331    };
332
333    class Edge {
334      friend class ListGraph;
335      template <typename T> friend class EdgeMap;
336
337      //template <typename T> friend class SymListGraph::SymEdgeMap;     
338      //friend Edge SymListGraph::opposite(Edge) const;
339     
340      friend class Node;
341      friend class NodeIt;
342    protected:
343      int n;
344      friend int ListGraph::id(Edge e) const;
345
346      Edge(int nn) {n=nn;}
347    public:
348      Edge() { }
349      Edge (Invalid) { n=-1; }
350      bool operator==(const Edge i) const {return n==i.n;}
351      bool operator!=(const Edge i) const {return n!=i.n;}
352      bool operator<(const Edge i) const {return n<i.n;}
353      ///\bug This is a workaround until somebody tells me how to
354      ///make class \c SymListGraph::SymEdgeMap friend of Edge
355      int &idref() {return n;}
356      const int &idref() const {return n;}
357    };
358   
359    class EdgeIt : public Edge {
360      friend class ListGraph;
361    public:
362      EdgeIt(const ListGraph& G) : Edge() {
363        int m;
364        for(m=G.first_node;
365            m!=-1 && G.nodes[m].first_in == -1; m = G.nodes[m].next);
366        n = (m==-1)?-1:G.nodes[m].first_in;
367      }
368      EdgeIt (Invalid i) : Edge(i) { }
369      EdgeIt() : Edge() { }
370      ///\bug This is a workaround until somebody tells me how to
371      ///make class \c SymListGraph::SymEdgeMap friend of Edge
372      int &idref() {return n;}
373    };
374   
375    class OutEdgeIt : public Edge {
376      friend class ListGraph;
377    public:
378      OutEdgeIt() : Edge() { }
379      OutEdgeIt (Invalid i) : Edge(i) { }
380
381      OutEdgeIt(const ListGraph& G,const Node v)
382        : Edge(G.nodes[v.n].first_out) {}
383    };
384   
385    class InEdgeIt : public Edge {
386      friend class ListGraph;
387    public:
388      InEdgeIt() : Edge() { }
389      InEdgeIt (Invalid i) : Edge(i) { }
390      InEdgeIt(const ListGraph& G,Node v) :Edge(G.nodes[v.n].first_in){}
391    };
392
393    template <typename T> class NodeMap : public DynMapBase<Node>
394    {
395      std::vector<T> container;
396
397    public:
398      typedef T ValueType;
399      typedef Node KeyType;
400
401      NodeMap(const ListGraph &_G) :
402        DynMapBase<Node>(_G), container(_G.maxNodeId())
403      {
404        G->dyn_node_maps.push_back(this);
405      }
406      NodeMap(const ListGraph &_G,const T &t) :
407        DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
408      {
409        G->dyn_node_maps.push_back(this);
410      }
411     
412      NodeMap(const NodeMap<T> &m) :
413        DynMapBase<Node>(*m.G), container(m.container)
414      {
415        G->dyn_node_maps.push_back(this);
416      }
417
418      template<typename TT> friend class NodeMap;
419 
420      ///\todo It can copy between different types.
421      ///
422      template<typename TT> NodeMap(const NodeMap<TT> &m) :
423        DynMapBase<Node>(*m.G)
424      {
425        G->dyn_node_maps.push_back(this);
426        typename std::vector<TT>::const_iterator i;
427        for(typename std::vector<TT>::const_iterator i=m.container.begin();
428            i!=m.container.end();
429            i++)
430          container.push_back(*i);
431      }
432      ~NodeMap()
433      {
434        if(G) {
435          std::vector<DynMapBase<Node>* >::iterator i;
436          for(i=G->dyn_node_maps.begin();
437              i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
438          //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
439          //A better way to do that: (Is this really important?)
440          if(*i==this) {
441            *i=G->dyn_node_maps.back();
442            G->dyn_node_maps.pop_back();
443          }
444        }
445      }
446
447      void add(const Node k)
448      {
449        if(k.n>=int(container.size())) container.resize(k.n+1);
450      }
451
452      void erase(const Node) { }
453     
454      void set(Node n, T a) { container[n.n]=a; }
455      //'T& operator[](Node n)' would be wrong here
456      typename std::vector<T>::reference
457      operator[](Node n) { return container[n.n]; }
458      //'const T& operator[](Node n)' would be wrong here
459      typename std::vector<T>::const_reference
460      operator[](Node n) const { return container[n.n]; }
461
462      ///\warning There is no safety check at all!
463      ///Using operator = between maps attached to different graph may
464      ///cause serious problem.
465      ///\todo Is this really so?
466      ///\todo It can copy between different types.
467      const NodeMap<T>& operator=(const NodeMap<T> &m)
468      {
469        container = m.container;
470        return *this;
471      }
472      template<typename TT>
473      const NodeMap<T>& operator=(const NodeMap<TT> &m)
474      {
475        copy(m.container.begin(), m.container.end(), container.begin());
476        return *this;
477      }
478     
479      void update() {}    //Useless for Dynamic Maps
480      void update(T a) {}  //Useless for Dynamic Maps
481    };
482   
483    template <typename T> class EdgeMap : public DynMapBase<Edge>
484    {
485      std::vector<T> container;
486
487    public:
488      typedef T ValueType;
489      typedef Edge KeyType;
490
491      EdgeMap(const ListGraph &_G) :
492        DynMapBase<Edge>(_G), container(_G.maxEdgeId())
493      {
494        //FIXME: What if there are empty Id's?
495        //FIXME: Can I use 'this' in a constructor?
496        G->dyn_edge_maps.push_back(this);
497      }
498      EdgeMap(const ListGraph &_G,const T &t) :
499        DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
500      {
501        G->dyn_edge_maps.push_back(this);
502      }
503      EdgeMap(const EdgeMap<T> &m) :
504        DynMapBase<Edge>(*m.G), container(m.container)
505      {
506        G->dyn_node_maps.push_back(this);
507      }
508
509      template<typename TT> friend class EdgeMap;
510
511      ///\todo It can copy between different types.
512      ///
513      template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
514        DynMapBase<Edge>(*m.G)
515      {
516        G->dyn_node_maps.push_back(this);
517        typename std::vector<TT>::const_iterator i;
518        for(typename std::vector<TT>::const_iterator i=m.container.begin();
519            i!=m.container.end();
520            i++)
521          container.push_back(*i);
522      }
523      ~EdgeMap()
524      {
525        if(G) {
526          std::vector<DynMapBase<Edge>* >::iterator i;
527          for(i=G->dyn_edge_maps.begin();
528              i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
529          //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
530          //A better way to do that: (Is this really important?)
531          if(*i==this) {
532            *i=G->dyn_edge_maps.back();
533            G->dyn_edge_maps.pop_back();
534          }
535        }
536      }
537     
538      void add(const Edge k)
539      {
540        if(k.n>=int(container.size())) container.resize(k.n+1);
541      }
542      void erase(const Edge) { }
543     
544      void set(Edge n, T a) { container[n.n]=a; }
545      //T get(Edge n) const { return container[n.n]; }
546      typename std::vector<T>::reference
547      operator[](Edge n) { return container[n.n]; }
548      typename std::vector<T>::const_reference
549      operator[](Edge n) const { return container[n.n]; }
550
551      ///\warning There is no safety check at all!
552      ///Using operator = between maps attached to different graph may
553      ///cause serious problem.
554      ///\todo Is this really so?
555      ///\todo It can copy between different types.
556      const EdgeMap<T>& operator=(const EdgeMap<T> &m)
557      {
558        container = m.container;
559        return *this;
560      }
561      template<typename TT>
562      const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
563      {
564        copy(m.container.begin(), m.container.end(), container.begin());
565        return *this;
566      }
567     
568      void update() {}    //Useless for DynMaps
569      void update(T a) {}  //Useless for DynMaps
570    };
571
572  };
573
574  ///Graph for bidirectional edges.
575
576  ///The purpose of this graph structure is to handle graphs
577  ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
578  ///of oppositely directed edges.
579  ///There is a new edge map type called
580  ///\ref SymListGraph::SymEdgeMap "SymEdgeMap"
581  ///that complements this
582  ///feature by
583  ///storing shared values for the edge pairs. The usual
584  ///\ref GraphSkeleton::EdgeMap "EdgeMap"
585  ///can be used
586  ///as well.
587  ///
588  ///The oppositely directed edge can also be obtained easily
589  ///using \ref opposite.
590  ///
591  ///Here erase(Edge) deletes a pair of edges.
592  ///
593  ///\todo this date structure need some reconsiderations. Maybe it
594  ///should be implemented independently from ListGraph.
595
596  class SymListGraph : public ListGraph
597  {
598  public:
599    template<typename T> class SymEdgeMap;
600    template<typename T> friend class SymEdgeMap;
601
602    SymListGraph() : ListGraph() { }
603    SymListGraph(const ListGraph &_g) : ListGraph(_g) { }
604    ///Adds a pair of oppositely directed edges to the graph.
605    Edge addEdge(Node u, Node v)
606    {
607      Edge e = ListGraph::addEdge(u,v);
608      ListGraph::addEdge(v,u);
609      return e;
610    }
611
612    void erase(Node n) { ListGraph::erase(n); }
613    ///The oppositely directed edge.
614
615    ///Returns the oppositely directed
616    ///pair of the edge \c e.
617    Edge opposite(Edge e) const
618    {
619      Edge f;
620      f.idref() = e.idref() - 2*(e.idref()%2) + 1;
621      return f;
622    }
623   
624    ///Removes a pair of oppositely directed edges to the graph.
625    void erase(Edge e) {
626      ListGraph::erase(opposite(e));
627      ListGraph::erase(e);
628    }
629   
630    ///Common data storage for the edge pairs.
631
632    ///This map makes it possible to store data shared by the oppositely
633    ///directed pairs of edges.
634    template <typename T> class SymEdgeMap : public DynMapBase<Edge>
635    {
636      std::vector<T> container;
637     
638    public:
639      typedef T ValueType;
640      typedef Edge KeyType;
641
642      SymEdgeMap(const SymListGraph &_G) :
643        DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2)
644      {
645        static_cast<const SymListGraph*>(G)->dyn_edge_maps.push_back(this);
646      }
647      SymEdgeMap(const SymListGraph &_G,const T &t) :
648        DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2,t)
649      {
650        G->dyn_edge_maps.push_back(this);
651      }
652
653      SymEdgeMap(const SymEdgeMap<T> &m) :
654        DynMapBase<SymEdge>(*m.G), container(m.container)
655      {
656        G->dyn_node_maps.push_back(this);
657      }
658
659      //      template<typename TT> friend class SymEdgeMap;
660
661      ///\todo It can copy between different types.
662      ///
663
664      template<typename TT> SymEdgeMap(const SymEdgeMap<TT> &m) :
665        DynMapBase<SymEdge>(*m.G)
666      {
667        G->dyn_node_maps.push_back(this);
668        typename std::vector<TT>::const_iterator i;
669        for(typename std::vector<TT>::const_iterator i=m.container.begin();
670            i!=m.container.end();
671            i++)
672          container.push_back(*i);
673      }
674 
675      ~SymEdgeMap()
676      {
677        if(G) {
678          std::vector<DynMapBase<Edge>* >::iterator i;
679          for(i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.begin();
680              i!=static_cast<const SymListGraph*>(G)->dyn_edge_maps.end()
681                && *i!=this; ++i) ;
682          //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
683          //A better way to do that: (Is this really important?)
684          if(*i==this) {
685            *i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.back();
686            static_cast<const SymListGraph*>(G)->dyn_edge_maps.pop_back();
687          }
688        }
689      }
690     
691      void add(const Edge k)
692      {
693        if(!k.idref()%2&&k.idref()/2>=int(container.size()))
694          container.resize(k.idref()/2+1);
695      }
696      void erase(const Edge k) { }
697     
698      void set(Edge n, T a) { container[n.idref()/2]=a; }
699      //T get(Edge n) const { return container[n.idref()/2]; }
700      typename std::vector<T>::reference
701      operator[](Edge n) { return container[n.idref()/2]; }
702      typename std::vector<T>::const_reference
703      operator[](Edge n) const { return container[n.idref()/2]; }
704
705      ///\warning There is no safety check at all!
706      ///Using operator = between maps attached to different graph may
707      ///cause serious problem.
708      ///\todo Is this really so?
709      ///\todo It can copy between different types.
710      const SymEdgeMap<T>& operator=(const SymEdgeMap<T> &m)
711      {
712        container = m.container;
713        return *this;
714      }
715      template<typename TT>
716      const SymEdgeMap<T>& operator=(const SymEdgeMap<TT> &m)
717      {
718        copy(m.container.begin(), m.container.end(), container.begin());
719        return *this;
720      }
721     
722      void update() {}    //Useless for DynMaps
723      void update(T a) {}  //Useless for DynMaps
724
725    };
726
727  };
728 
729
730  ///A graph class containing only nodes.
731
732  ///This class implements a graph structure without edges.
733  ///The most useful application of this class is to be the node set of an
734  ///\ref EdgeSet class.
735  ///
736  ///It conforms to the graph interface documented under
737  ///the description of \ref GraphSkeleton with the exception that you cannot
738  ///add (or delete) edges. The usual edge iterators are exists, but they are
739  ///always \ref INVALID.
740  ///\sa \ref GraphSkeleton
741  ///\se \ref EdgeSet
742  class NodeSet {
743
744    //Nodes are double linked.
745    //The free nodes are only single linked using the "next" field.
746    struct NodeT
747    {
748      int first_in,first_out;
749      int prev, next;
750      //      NodeT() {}
751    };
752
753    std::vector<NodeT> nodes;
754    //The first node
755    int first_node;
756    //The first free node
757    int first_free_node;
758   
759  protected:
760   
761    template <typename Key> class DynMapBase
762    {
763    protected:
764      const NodeSet* G;
765    public:
766      virtual void add(const Key k) = NULL;
767      virtual void erase(const Key k) = NULL;
768      DynMapBase(const NodeSet &_G) : G(&_G) {}
769      virtual ~DynMapBase() {}
770      friend class NodeSet;
771    };
772   
773  public:
774    template <typename T> class EdgeMap;
775    template <typename T> class NodeMap;
776   
777    class Node;
778    class Edge;
779
780    //  protected:
781    // HELPME:
782  protected:
783    ///\bug It must be public because of SymEdgeMap.
784    ///
785    mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
786    //mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
787   
788  public:
789
790    class NodeIt;
791    class EdgeIt;
792    class OutEdgeIt;
793    class InEdgeIt;
794   
795    template <typename T> class NodeMap;
796    template <typename T> class EdgeMap;
797   
798  public:
799
800    NodeSet() : nodes(), first_node(-1),
801                  first_free_node(-1) {}
802    NodeSet(const NodeSet &_g) : nodes(_g.nodes), first_node(_g.first_node),
803                                     first_free_node(_g.first_free_node) {}
804   
805    ~NodeSet()
806    {
807      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
808          i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
809      //for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
810      //          i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
811    }
812
813    int nodeNum() const { return nodes.size(); }  //FIXME: What is this?
814    int edgeNum() const { return 0; }  //FIXME: What is this?
815
816    ///\bug This function does something different than
817    ///its name would suggests...
818    int maxNodeId() const { return nodes.size(); }  //FIXME: What is this?
819    ///\bug This function does something different than
820    ///its name would suggests...
821    int maxEdgeId() const { return 0; }  //FIXME: What is this?
822
823    Node tail(Edge e) const { return INVALID; }
824    Node head(Edge e) const { return INVALID; }
825
826    Node aNode(OutEdgeIt e) const { return INVALID; }
827    Node aNode(InEdgeIt e) const { return INVALID; }
828
829    Node bNode(OutEdgeIt e) const { return INVALID; }
830    Node bNode(InEdgeIt e) const { return INVALID; }
831
832    NodeIt& first(NodeIt& v) const {
833      v=NodeIt(*this); return v; }
834    EdgeIt& first(EdgeIt& e) const {
835      e=EdgeIt(*this); return e; }
836    OutEdgeIt& first(OutEdgeIt& e, const Node v) const {
837      e=OutEdgeIt(*this,v); return e; }
838    InEdgeIt& first(InEdgeIt& e, const Node v) const {
839      e=InEdgeIt(*this,v); return e; }
840
841//     template< typename It >
842//     It first() const { It e; first(e); return e; }
843
844//     template< typename It >
845//     It first(Node v) const { It e; first(e,v); return e; }
846
847    bool valid(Edge e) const { return false; }
848    bool valid(Node n) const { return n.n!=-1; }
849   
850    void setInvalid(Edge &e) { }
851    void setInvalid(Node &n) { n.n=-1; }
852   
853    template <typename It> It getNext(It it) const
854    { It tmp(it); return next(tmp); }
855
856    NodeIt& next(NodeIt& it) const {
857      it.n=nodes[it.n].next;
858      return it;
859    }
860    OutEdgeIt& next(OutEdgeIt& it) const { return it; }
861    InEdgeIt& next(InEdgeIt& it) const { return it; }
862    EdgeIt& next(EdgeIt& it) const { return it; }
863
864    int id(Node v) const { return v.n; }
865    int id(Edge e) const { return -1; }
866
867    /// Adds a new node to the graph.
868
869    /// \todo It adds the nodes in a reversed order.
870    /// (i.e. the lastly added node becomes the first.)
871    Node addNode() {
872      int n;
873     
874      if(first_free_node==-1)
875        {
876          n = nodes.size();
877          nodes.push_back(NodeT());
878        }
879      else {
880        n = first_free_node;
881        first_free_node = nodes[n].next;
882      }
883     
884      nodes[n].next = first_node;
885      if(first_node != -1) nodes[first_node].prev = n;
886      first_node = n;
887      nodes[n].prev = -1;
888     
889      nodes[n].first_in = nodes[n].first_out = -1;
890     
891      Node nn; nn.n=n;
892
893      //Update dynamic maps
894      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
895          i!=dyn_node_maps.end(); ++i) (**i).add(nn);
896
897      return nn;
898    }
899   
900    void erase(Node nn) {
901      int n=nn.n;
902     
903      if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
904      if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
905      else first_node = nodes[n].next;
906     
907      nodes[n].next = first_free_node;
908      first_free_node = n;
909
910      //Update dynamic maps
911      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
912          i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
913    }
914   
915    ///\bug Dynamic maps must be updated!
916    ///
917    void clear() {
918      nodes.clear();
919      first_node = first_free_node = -1;
920    }
921
922    class Node {
923      friend class NodeSet;
924      template <typename T> friend class NodeMap;
925     
926      friend class Edge;
927      friend class OutEdgeIt;
928      friend class InEdgeIt;
929
930    protected:
931      int n;
932      friend int NodeSet::id(Node v) const;
933      Node(int nn) {n=nn;}
934    public:
935      Node() {}
936      Node (Invalid i) { n=-1; }
937      bool operator==(const Node i) const {return n==i.n;}
938      bool operator!=(const Node i) const {return n!=i.n;}
939      bool operator<(const Node i) const {return n<i.n;}
940    };
941   
942    class NodeIt : public Node {
943      friend class NodeSet;
944    public:
945      NodeIt(const NodeSet& G) : Node(G.first_node) { }
946      NodeIt() : Node() { }
947    };
948
949    class Edge {
950      //friend class NodeSet;
951      //template <typename T> friend class EdgeMap;
952
953      //template <typename T> friend class SymNodeSet::SymEdgeMap;     
954      //friend Edge SymNodeSet::opposite(Edge) const;
955     
956      //      friend class Node;
957      //      friend class NodeIt;
958    protected:
959      //friend int NodeSet::id(Edge e) const;
960      //      Edge(int nn) {}
961    public:
962      Edge() { }
963      Edge (Invalid) { }
964      bool operator==(const Edge i) const {return true;}
965      bool operator!=(const Edge i) const {return false;}
966      bool operator<(const Edge i) const {return false;}
967      ///\bug This is a workaround until somebody tells me how to
968      ///make class \c SymNodeSet::SymEdgeMap friend of Edge
969      //      int idref() {return -1;}
970      //      int idref() const {return -1;}
971    };
972   
973    class EdgeIt : public Edge {
974      //friend class NodeSet;
975    public:
976      EdgeIt(const NodeSet& G) : Edge() { }
977      EdgeIt (Invalid i) : Edge(i) { }
978      EdgeIt() : Edge() { }
979      ///\bug This is a workaround until somebody tells me how to
980      ///make class \c SymNodeSet::SymEdgeMap friend of Edge
981      //      int idref() {return -1;}
982    };
983   
984    class OutEdgeIt : public Edge {
985      friend class NodeSet;
986    public:
987      OutEdgeIt() : Edge() { }
988      OutEdgeIt (Invalid i) : Edge(i) { }
989      OutEdgeIt(const NodeSet& G,const Node v)  : Edge() {}
990    };
991   
992    class InEdgeIt : public Edge {
993      friend class NodeSet;
994    public:
995      InEdgeIt() : Edge() { }
996      InEdgeIt (Invalid i) : Edge(i) { }
997      InEdgeIt(const NodeSet& G,Node v) :Edge() {}
998    };
999
1000    template <typename T> class NodeMap : public DynMapBase<Node>
1001    {
1002      std::vector<T> container;
1003
1004    public:
1005      typedef T ValueType;
1006      typedef Node KeyType;
1007
1008      NodeMap(const NodeSet &_G) :
1009        DynMapBase<Node>(_G), container(_G.maxNodeId())
1010      {
1011        G->dyn_node_maps.push_back(this);
1012      }
1013      NodeMap(const NodeSet &_G,const T &t) :
1014        DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
1015      {
1016        G->dyn_node_maps.push_back(this);
1017      }
1018     
1019      NodeMap(const NodeMap<T> &m) :
1020        DynMapBase<Node>(*m.G), container(m.container)
1021      {
1022        G->dyn_node_maps.push_back(this);
1023      }
1024
1025      template<typename TT> friend class NodeMap;
1026 
1027      ///\todo It can copy between different types.
1028      ///
1029      template<typename TT> NodeMap(const NodeMap<TT> &m) :
1030        DynMapBase<Node>(*m.G)
1031      {
1032        G->dyn_node_maps.push_back(this);
1033        typename std::vector<TT>::const_iterator i;
1034        for(typename std::vector<TT>::const_iterator i=m.container.begin();
1035            i!=m.container.end();
1036            i++)
1037          container.push_back(*i);
1038      }
1039      ~NodeMap()
1040      {
1041        if(G) {
1042          std::vector<DynMapBase<Node>* >::iterator i;
1043          for(i=G->dyn_node_maps.begin();
1044              i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
1045          //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
1046          //A better way to do that: (Is this really important?)
1047          if(*i==this) {
1048            *i=G->dyn_node_maps.back();
1049            G->dyn_node_maps.pop_back();
1050          }
1051        }
1052      }
1053
1054      void add(const Node k)
1055      {
1056        if(k.n>=int(container.size())) container.resize(k.n+1);
1057      }
1058
1059      void erase(const Node) { }
1060     
1061      void set(Node n, T a) { container[n.n]=a; }
1062      //'T& operator[](Node n)' would be wrong here
1063      typename std::vector<T>::reference
1064      operator[](Node n) { return container[n.n]; }
1065      //'const T& operator[](Node n)' would be wrong here
1066      typename std::vector<T>::const_reference
1067      operator[](Node n) const { return container[n.n]; }
1068
1069      ///\warning There is no safety check at all!
1070      ///Using operator = between maps attached to different graph may
1071      ///cause serious problem.
1072      ///\todo Is this really so?
1073      ///\todo It can copy between different types.
1074      const NodeMap<T>& operator=(const NodeMap<T> &m)
1075      {
1076        container = m.container;
1077        return *this;
1078      }
1079      template<typename TT>
1080      const NodeMap<T>& operator=(const NodeMap<TT> &m)
1081      {
1082        copy(m.container.begin(), m.container.end(), container.begin());
1083        return *this;
1084      }
1085     
1086      void update() {}    //Useless for Dynamic Maps
1087      void update(T a) {}  //Useless for Dynamic Maps
1088    };
1089   
1090    template <typename T> class EdgeMap
1091    {
1092    public:
1093      typedef T ValueType;
1094      typedef Edge KeyType;
1095
1096      EdgeMap(const NodeSet &) { }
1097      EdgeMap(const NodeSet &,const T &) { }
1098      EdgeMap(const EdgeMap<T> &) { }
1099      //      template<typename TT> friend class EdgeMap;
1100
1101      ///\todo It can copy between different types.
1102      ///
1103      template<typename TT> EdgeMap(const EdgeMap<TT> &) { }
1104      ~EdgeMap() { }
1105
1106      void add(const Edge  ) { }
1107      void erase(const Edge) { }
1108     
1109      void set(Edge, T) { }
1110      //T get(Edge n) const { return container[n.n]; }
1111      ValueType &operator[](Edge) { return *((T*)(NULL)); }
1112      const ValueType &operator[](Edge) const { return *((T*)(NULL)); }
1113
1114      const EdgeMap<T>& operator=(const EdgeMap<T> &) { return *this; }
1115   
1116      template<typename TT>
1117      const EdgeMap<T>& operator=(const EdgeMap<TT> &m) { return *this; }
1118     
1119      void update() {}
1120      void update(T a) {}
1121    };
1122  };
1123
1124
1125
1126  ///Graph structure using a node set of another graph.
1127
1128  ///This structure can be used to establish another graph over a node set
1129  /// of an existing one. The node iterator will go through the nodes of the
1130  /// original graph, and the NodeMap's of both graphs will convert to
1131  /// each other.
1132  ///
1133  ///\warning Adding or deleting nodes from the graph is not safe if an
1134  ///\ref EdgeSet is currently attached to it!
1135  ///
1136  ///\todo Make it possible to add/delete edges from the base graph
1137  ///(and from \ref EdgeSet, as well)
1138  ///
1139  ///\param GG The type of the graph which shares its node set with this class.
1140  ///Its interface must conform with \ref GraphSkeleton.
1141  ///
1142  ///It conforms to the graph interface documented under
1143  ///the description of \ref GraphSkeleton.
1144  ///\sa \ref GraphSkeleton.
1145  ///\sa \ref NodeSet.
1146  template<typename GG>
1147  class EdgeSet {
1148
1149    typedef GG NodeGraphType;
1150
1151    NodeGraphType &G;
1152
1153    class Node;
1154   
1155    //Edges are double linked.
1156    //The free edges are only single linked using the "next_in" field.
1157    struct NodeT
1158    {
1159      int first_in,first_out;
1160      NodeT() : first_in(-1), first_out(-1) { }
1161    };
1162
1163    struct EdgeT
1164    {
1165      Node head, tail;
1166      int prev_in, prev_out;
1167      int next_in, next_out;
1168    };
1169
1170   
1171    typename NodeGraphType::NodeMap<NodeT> nodes;
1172   
1173    std::vector<EdgeT> edges;
1174    //The first free edge
1175    int first_free_edge;
1176   
1177  protected:
1178   
1179    template <typename Key> class DynMapBase
1180    {
1181    protected:
1182      const EdgeSet* G;
1183    public:
1184      virtual void add(const Key k) = NULL;
1185      virtual void erase(const Key k) = NULL;
1186      DynMapBase(const EdgeSet &_G) : G(&_G) {}
1187      virtual ~DynMapBase() {}
1188      friend class EdgeSet;
1189    };
1190   
1191  public:
1192    //template <typename T> class NodeMap;
1193    template <typename T> class EdgeMap;
1194   
1195    class Node;
1196    class Edge;
1197
1198    //  protected:
1199    // HELPME:
1200  protected:
1201    // mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
1202    ///\bug It must be public because of SymEdgeMap.
1203    ///
1204    mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
1205   
1206  public:
1207
1208    class NodeIt;
1209    class EdgeIt;
1210    class OutEdgeIt;
1211    class InEdgeIt;
1212   
1213    template <typename T> class NodeMap;
1214    template <typename T> class EdgeMap;
1215   
1216  public:
1217
1218    EdgeSet(NodeGraphType &_G) : G(_G),
1219                                 nodes(_G), edges(),
1220                                 first_free_edge(-1) { }
1221    EdgeSet(const EdgeSet &_g) : G(_g.G), nodes(_g.G), edges(_g.edges),
1222                                 first_free_edge(_g.first_free_edge) { }
1223   
1224    ~EdgeSet()
1225    {
1226      // for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
1227      //  i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
1228      for(typename std::vector<DynMapBase<Edge> * >::iterator
1229            i=dyn_edge_maps.begin();
1230          i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
1231    }
1232
1233    int nodeNum() const { return G.nodeNum(); }  //FIXME: What is this?
1234    int edgeNum() const { return edges.size(); }  //FIXME: What is this?
1235
1236    ///\bug This function does something different than
1237    ///its name would suggests...
1238    int maxNodeId() const { return G.maxNodeId(); }  //FIXME: What is this?
1239    ///\bug This function does something different than
1240    ///its name would suggests...
1241    int maxEdgeId() const { return edges.size(); }  //FIXME: What is this?
1242
1243    Node tail(Edge e) const { return edges[e.n].tail; }
1244    Node head(Edge e) const { return edges[e.n].head; }
1245
1246    Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
1247    Node aNode(InEdgeIt e) const { return edges[e.n].head; }
1248
1249    Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
1250    Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
1251
1252    NodeIt& first(NodeIt& v) const {
1253      v=NodeIt(*this); return v; }
1254    EdgeIt& first(EdgeIt& e) const {
1255      e=EdgeIt(*this); return e; }
1256    OutEdgeIt& first(OutEdgeIt& e, const Node v) const {
1257      e=OutEdgeIt(*this,v); return e; }
1258    InEdgeIt& first(InEdgeIt& e, const Node v) const {
1259      e=InEdgeIt(*this,v); return e; }
1260
1261//     template< typename It >
1262//     It first() const { It e; first(e); return e; }
1263
1264//     template< typename It >
1265//     It first(Node v) const { It e; first(e,v); return e; }
1266
1267    bool valid(Edge e) const { return e.n!=-1; }
1268    bool valid(Node n) const { return G.valid(n); }
1269   
1270    void setInvalid(Edge &e) { e.n=-1; }
1271    void setInvalid(Node &n) { G.setInvalid(n); }
1272   
1273    template <typename It> It getNext(It it) const
1274    { It tmp(it); return next(tmp); }
1275
1276    NodeIt& next(NodeIt& it) const { G.next(it); return it; }
1277    OutEdgeIt& next(OutEdgeIt& it) const
1278    { it.n=edges[it.n].next_out; return it; }
1279    InEdgeIt& next(InEdgeIt& it) const
1280    { it.n=edges[it.n].next_in; return it; }
1281    EdgeIt& next(EdgeIt& it) const {
1282      if(edges[it.n].next_in!=-1) {
1283        it.n=edges[it.n].next_in;
1284      }
1285      else {
1286        typename NodeGraphType::Node n;
1287        for(n=G.next(edges[it.n].head);
1288            G.valid(n) && nodes[n].first_in == -1;
1289            G.next(n)) ;
1290        it.n = (G.valid(n))?-1:nodes[n].first_in;
1291      }
1292      return it;
1293    }
1294
1295    int id(Node v) const { return G.id(v); }
1296    int id(Edge e) const { return e.n; }
1297
1298    /// Adds a new node to the graph.
1299    Node addNode() { return G.AddNode(); }
1300   
1301    Edge addEdge(Node u, Node v) {
1302      int n;
1303     
1304      if(first_free_edge==-1)
1305        {
1306          n = edges.size();
1307          edges.push_back(EdgeT());
1308        }
1309      else {
1310        n = first_free_edge;
1311        first_free_edge = edges[n].next_in;
1312      }
1313     
1314      edges[n].tail = u; edges[n].head = v;
1315
1316      edges[n].next_out = nodes[u].first_out;
1317      if(nodes[u].first_out != -1) edges[nodes[u].first_out].prev_out = n;
1318      edges[n].next_in = nodes[v].first_in;
1319      if(nodes[v].first_in != -1) edges[nodes[v].first_in].prev_in = n;
1320      edges[n].prev_in = edges[n].prev_out = -1;
1321       
1322      nodes[u].first_out = nodes[v].first_in = n;
1323
1324      Edge e; e.n=n;
1325
1326      //Update dynamic maps
1327      for(typename std::vector<DynMapBase<Edge> * >::iterator
1328            i=dyn_edge_maps.begin();
1329          i!=dyn_edge_maps.end(); ++i) (**i).add(e);
1330
1331      return e;
1332    }
1333
1334  private:
1335    void eraseEdge(int n) {
1336     
1337      if(edges[n].next_in!=-1)
1338        edges[edges[n].next_in].prev_in = edges[n].prev_in;
1339      if(edges[n].prev_in!=-1)
1340        edges[edges[n].prev_in].next_in = edges[n].next_in;
1341      else nodes[edges[n].head].first_in = edges[n].next_in;
1342     
1343      if(edges[n].next_out!=-1)
1344        edges[edges[n].next_out].prev_out = edges[n].prev_out;
1345      if(edges[n].prev_out!=-1)
1346        edges[edges[n].prev_out].next_out = edges[n].next_out;
1347      else nodes[edges[n].tail].first_out = edges[n].next_out;
1348     
1349      edges[n].next_in = first_free_edge;
1350      first_free_edge = -1;     
1351
1352      //Update dynamic maps
1353      Edge e; e.n=n;
1354      for(typename std::vector<DynMapBase<Edge> * >::iterator
1355            i=dyn_edge_maps.begin();
1356          i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
1357    }
1358     
1359  public:
1360
1361//     void erase(Node nn) {
1362//       int n=nn.n;
1363//       int m;
1364//       while((m=nodes[n].first_in)!=-1) eraseEdge(m);
1365//       while((m=nodes[n].first_out)!=-1) eraseEdge(m);
1366//     }
1367   
1368    void erase(Edge e) { eraseEdge(e.n); }
1369
1370//     //\bug Dynamic maps must be updated!
1371//     //
1372//     void clear() {
1373//       nodes.clear();edges.clear();
1374//       first_node=first_free_node=first_free_edge=-1;
1375//     }
1376
1377    class Node : public NodeGraphType::Node {
1378      friend class EdgeSet;
1379      //      template <typename T> friend class NodeMap;
1380     
1381      friend class Edge;
1382      friend class OutEdgeIt;
1383      friend class InEdgeIt;
1384      friend class SymEdge;
1385
1386    protected:
1387      friend int EdgeSet::id(Node v) const;
1388      //      Node(int nn) {n=nn;}
1389    public:
1390      Node() : NodeGraphType::Node() {}
1391      Node (Invalid i) : NodeGraphType::Node(i) {}
1392      Node(const typename NodeGraphType::Node &n) : NodeGraphType::Node(n) {}
1393    };
1394   
1395    class NodeIt : public NodeGraphType::NodeIt {
1396      friend class EdgeSet;
1397    public:
1398      NodeIt() : NodeGraphType::NodeIt() { }
1399      NodeIt (Invalid i) : NodeGraphType::NodeIt(i) {}
1400      NodeIt(const EdgeSet& _G) : NodeGraphType::NodeIt(_G.G) { }
1401      NodeIt(const typename NodeGraphType::NodeIt &n)
1402        : NodeGraphType::NodeIt(n) {}
1403      operator Node() { return Node(*this);}
1404    };
1405
1406    class Edge {
1407      friend class EdgeSet;
1408      template <typename T> friend class EdgeMap;
1409
1410      //template <typename T> friend class SymEdgeSet::SymEdgeMap;     
1411      //friend Edge SymEdgeSet::opposite(Edge) const;
1412     
1413      friend class Node;
1414      friend class NodeIt;
1415    protected:
1416      int n;
1417      friend int EdgeSet::id(Edge e) const;
1418
1419      Edge(int nn) {n=nn;}
1420    public:
1421      Edge() { }
1422      Edge (Invalid) { n=-1; }
1423      bool operator==(const Edge i) const {return n==i.n;}
1424      bool operator!=(const Edge i) const {return n!=i.n;}
1425      bool operator<(const Edge i) const {return n<i.n;}
1426      ///\bug This is a workaround until somebody tells me how to
1427      ///make class \c SymEdgeSet::SymEdgeMap friend of Edge
1428      int &idref() {return n;}
1429      const int &idref() const {return n;}
1430    };
1431   
1432    class EdgeIt : public Edge {
1433      friend class EdgeSet;
1434    public:
1435      EdgeIt(const EdgeSet& G) : Edge() {
1436        typename NodeGraphType::Node m;
1437        for(G.first(m);
1438            G.valid(m) && nodes[m].first_in == -1;  G.next[m]);
1439        n = G.valid(m)?-1:nodes[m].first_in;
1440      }
1441      EdgeIt (Invalid i) : Edge(i) { }
1442      EdgeIt() : Edge() { }
1443      ///\bug This is a workaround until somebody tells me how to
1444      ///make class \c SymEdgeSet::SymEdgeMap friend of Edge
1445      int &idref() {return n;}
1446    };
1447   
1448    class OutEdgeIt : public Edge {
1449      friend class EdgeSet;
1450    public:
1451      OutEdgeIt() : Edge() { }
1452      OutEdgeIt (Invalid i) : Edge(i) { }
1453
1454      OutEdgeIt(const EdgeSet& G,const Node v) : Edge(nodes[v].first_out) { }
1455    };
1456   
1457    class InEdgeIt : public Edge {
1458      friend class EdgeSet;
1459    public:
1460      InEdgeIt() : Edge() { }
1461      InEdgeIt (Invalid i) : Edge(i) { }
1462      InEdgeIt(const EdgeSet& G,Node v) :Edge(nodes[v].first_in) { }
1463    };
1464
1465    template <typename T> class NodeMap : public NodeGraphType::NodeMap<T>
1466    {
1467    public:
1468      NodeMap(const EdgeSet &_G) :
1469        NodeGraphType::NodeMap<T>(_G.G) { }
1470      NodeMap(const EdgeSet &_G,const T &t) :
1471        NodeGraphType::NodeMap<T>(_G.G,t) { }
1472      //It is unnecessary
1473      NodeMap(const typename NodeGraphType::NodeMap<T> &m)
1474        : NodeGraphType::NodeMap<T>(m) { }
1475
1476      ///\todo It can copy between different types.
1477      ///
1478      template<typename TT>
1479      NodeMap(const typename NodeGraphType::NodeMap<TT> &m)
1480        : NodeGraphType::NodeMap<T>(m) { }
1481    };
1482   
1483    template <typename T> class EdgeMap : public DynMapBase<Edge>
1484    {
1485      std::vector<T> container;
1486
1487    public:
1488      typedef T ValueType;
1489      typedef Edge KeyType;
1490
1491      EdgeMap(const EdgeSet &_G) :
1492        DynMapBase<Edge>(_G), container(_G.maxEdgeId())
1493      {
1494        //FIXME: What if there are empty Id's?
1495        //FIXME: Can I use 'this' in a constructor?
1496        G->dyn_edge_maps.push_back(this);
1497      }
1498      EdgeMap(const EdgeSet &_G,const T &t) :
1499        DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
1500      {
1501        G->dyn_edge_maps.push_back(this);
1502      }
1503      EdgeMap(const EdgeMap<T> &m) :
1504        DynMapBase<Edge>(*m.G), container(m.container)
1505      {
1506        G->dyn_node_maps.push_back(this);
1507      }
1508
1509      template<typename TT> friend class EdgeMap;
1510
1511      ///\todo It can copy between different types.
1512      ///
1513      template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
1514        DynMapBase<Edge>(*m.G)
1515      {
1516        G->dyn_node_maps.push_back(this);
1517        typename std::vector<TT>::const_iterator i;
1518        for(typename std::vector<TT>::const_iterator i=m.container.begin();
1519            i!=m.container.end();
1520            i++)
1521          container.push_back(*i);
1522      }
1523      ~EdgeMap()
1524      {
1525        if(G) {
1526          typename std::vector<DynMapBase<Edge>* >::iterator i;
1527          for(i=G->dyn_edge_maps.begin();
1528              i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
1529          //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
1530          //A better way to do that: (Is this really important?)
1531          if(*i==this) {
1532            *i=G->dyn_edge_maps.back();
1533            G->dyn_edge_maps.pop_back();
1534          }
1535        }
1536      }
1537     
1538      void add(const Edge k)
1539      {
1540        if(k.n>=int(container.size())) container.resize(k.n+1);
1541      }
1542      void erase(const Edge) { }
1543     
1544      void set(Edge n, T a) { container[n.n]=a; }
1545      //T get(Edge n) const { return container[n.n]; }
1546      typename std::vector<T>::reference
1547      operator[](Edge n) { return container[n.n]; }
1548      typename std::vector<T>::const_reference
1549      operator[](Edge n) const { return container[n.n]; }
1550
1551      ///\warning There is no safety check at all!
1552      ///Using operator = between maps attached to different graph may
1553      ///cause serious problem.
1554      ///\todo Is this really so?
1555      ///\todo It can copy between different types.
1556      const EdgeMap<T>& operator=(const EdgeMap<T> &m)
1557      {
1558        container = m.container;
1559        return *this;
1560      }
1561      template<typename TT>
1562      const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
1563      {
1564        copy(m.container.begin(), m.container.end(), container.begin());
1565        return *this;
1566      }
1567     
1568      void update() {}    //Useless for DynMaps
1569      void update(T a) {}  //Useless for DynMaps
1570    };
1571
1572  };
1573
1574/// @} 
1575
1576} //namespace hugo
1577
1578#endif //HUGO_LIST_GRAPH_H
Note: See TracBrowser for help on using the repository browser.