1 | /* -*- C++ -*- |
---|
2 | * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Combinatorial Optimization Research Group, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef LEMON_LP_BASE_H |
---|
18 | #define LEMON_LP_BASE_H |
---|
19 | |
---|
20 | #include<vector> |
---|
21 | #include<map> |
---|
22 | #include<limits> |
---|
23 | |
---|
24 | #include<lemon/utility.h> |
---|
25 | #include<lemon/error.h> |
---|
26 | #include<lemon/invalid.h> |
---|
27 | |
---|
28 | //#include"lin_expr.h" |
---|
29 | |
---|
30 | ///\file |
---|
31 | ///\brief The interface of the LP solver interface. |
---|
32 | namespace lemon { |
---|
33 | |
---|
34 | ///Internal data structure to convert floating id's to fix one's |
---|
35 | |
---|
36 | ///\todo This might by implemented to be usable in other places. |
---|
37 | class _FixId |
---|
38 | { |
---|
39 | std::vector<int> index; |
---|
40 | std::vector<int> cross; |
---|
41 | int first_free; |
---|
42 | public: |
---|
43 | _FixId() : first_free(-1) {}; |
---|
44 | ///Convert a floating id to a fix one |
---|
45 | |
---|
46 | ///\param n is a floating id |
---|
47 | ///\return the corresponding fix id |
---|
48 | int fixId(int n) {return cross[n];} |
---|
49 | ///Convert a fix id to a floating one |
---|
50 | |
---|
51 | ///\param n is a fix id |
---|
52 | ///\return the corresponding floating id |
---|
53 | int floatingId(int n) { return index[n];} |
---|
54 | ///Add a new floating id. |
---|
55 | |
---|
56 | ///\param n is a floating id |
---|
57 | ///\return the fix id of the new value |
---|
58 | ///\todo Multiple additions should also be handled. |
---|
59 | int insert(int n) |
---|
60 | { |
---|
61 | if(n>=int(cross.size())) { |
---|
62 | cross.resize(n+1); |
---|
63 | if(first_free==-1) { |
---|
64 | cross[n]=index.size(); |
---|
65 | index.push_back(n); |
---|
66 | } |
---|
67 | else { |
---|
68 | cross[n]=first_free; |
---|
69 | int next=index[first_free]; |
---|
70 | index[first_free]=n; |
---|
71 | first_free=next; |
---|
72 | } |
---|
73 | return cross[n]; |
---|
74 | } |
---|
75 | else throw LogicError(); //floatingId-s must form a continuous range; |
---|
76 | } |
---|
77 | ///Remove a fix id. |
---|
78 | |
---|
79 | ///\param n is a fix id |
---|
80 | /// |
---|
81 | void erase(int n) |
---|
82 | { |
---|
83 | int fl=index[n]; |
---|
84 | index[n]=first_free; |
---|
85 | first_free=n; |
---|
86 | for(int i=fl+1;i<int(cross.size());++i) { |
---|
87 | cross[i-1]=cross[i]; |
---|
88 | index[cross[i]]--; |
---|
89 | } |
---|
90 | cross.pop_back(); |
---|
91 | } |
---|
92 | ///An upper bound on the largest fix id. |
---|
93 | |
---|
94 | ///\todo Do we need this? |
---|
95 | /// |
---|
96 | std::size_t maxFixId() { return cross.size()-1; } |
---|
97 | |
---|
98 | }; |
---|
99 | |
---|
100 | ///Common base class for LP solvers |
---|
101 | class LpSolverBase { |
---|
102 | |
---|
103 | public: |
---|
104 | |
---|
105 | ///\e |
---|
106 | enum SolutionType { |
---|
107 | ///\e |
---|
108 | INFEASIBLE = 0, |
---|
109 | ///\e |
---|
110 | UNBOUNDED = 1, |
---|
111 | ///\e |
---|
112 | OPTIMAL = 2, |
---|
113 | ///\e |
---|
114 | FEASIBLE = 3, |
---|
115 | }; |
---|
116 | |
---|
117 | ///The floating point type used by the solver |
---|
118 | typedef double Value; |
---|
119 | ///The infinity constant |
---|
120 | static const Value INF; |
---|
121 | ///The not a number constant |
---|
122 | static const Value NaN; |
---|
123 | |
---|
124 | ///Refer to a column of the LP. |
---|
125 | |
---|
126 | ///This type is used to refer to a column of the LP. |
---|
127 | /// |
---|
128 | ///Its value remains valid and correct even after the addition or erase of |
---|
129 | ///new column (unless the referred column itself was also deleted, |
---|
130 | ///of course). |
---|
131 | /// |
---|
132 | ///\todo Document what can one do with a Col (INVALID, comparing, |
---|
133 | ///it is similar to Node/Edge) |
---|
134 | class Col { |
---|
135 | protected: |
---|
136 | int id; |
---|
137 | friend class LpSolverBase; |
---|
138 | public: |
---|
139 | typedef Value ExprValue; |
---|
140 | typedef True LpSolverCol; |
---|
141 | Col() {} |
---|
142 | Col(const Invalid&) : id(-1) {} |
---|
143 | bool operator<(Col c) const {return id<c.id;} |
---|
144 | bool operator==(Col c) const {return id==c.id;} |
---|
145 | bool operator!=(Col c) const {return id==c.id;} |
---|
146 | }; |
---|
147 | |
---|
148 | ///Refer to a row of the LP. |
---|
149 | |
---|
150 | ///This type is used to refer to a row of the LP. |
---|
151 | /// |
---|
152 | ///Its value remains valid and correct even after the addition or erase of |
---|
153 | ///new rows (unless the referred row itself was also deleted, of course). |
---|
154 | /// |
---|
155 | ///\todo Document what can one do with a Row (INVALID, comparing, |
---|
156 | ///it is similar to Node/Edge) |
---|
157 | class Row { |
---|
158 | protected: |
---|
159 | int id; |
---|
160 | friend class LpSolverBase; |
---|
161 | public: |
---|
162 | typedef Value ExprValue; |
---|
163 | typedef True LpSolverRow; |
---|
164 | Row() {} |
---|
165 | Row(const Invalid&) : id(-1) {} |
---|
166 | typedef True LpSolverRow; |
---|
167 | bool operator<(Row c) const {return id<c.id;} |
---|
168 | bool operator==(Row c) const {return id==c.id;} |
---|
169 | bool operator!=(Row c) const {return id==c.id;} |
---|
170 | }; |
---|
171 | |
---|
172 | ///Linear expression |
---|
173 | // typedef SparseLinExpr<Col> Expr; |
---|
174 | class Expr : public std::map<Col,Col::ExprValue> |
---|
175 | { |
---|
176 | public: |
---|
177 | typedef Col Var; |
---|
178 | typedef Col::ExprValue Coeff; |
---|
179 | |
---|
180 | protected: |
---|
181 | typedef std::map<Col,Col::ExprValue> Base; |
---|
182 | |
---|
183 | Coeff const_comp; |
---|
184 | public: |
---|
185 | typedef True IsLinExpression; |
---|
186 | ///\e |
---|
187 | Expr() : Base(), const_comp(0) { } |
---|
188 | ///\e |
---|
189 | Expr(const Var &v) : const_comp(0) { |
---|
190 | Base::insert(std::make_pair(v, 1)); |
---|
191 | } |
---|
192 | ///\e |
---|
193 | Expr(const Coeff &v) : const_comp(v) {} |
---|
194 | ///\e |
---|
195 | void set(const Var &v,const Coeff &c) { |
---|
196 | Base::insert(std::make_pair(v, c)); |
---|
197 | } |
---|
198 | ///\e |
---|
199 | Coeff &constComp() { return const_comp; } |
---|
200 | ///\e |
---|
201 | const Coeff &constComp() const { return const_comp; } |
---|
202 | |
---|
203 | ///Removes the components with zero coefficient. |
---|
204 | void simplify() { |
---|
205 | for (Base::iterator i=Base::begin(); i!=Base::end();) { |
---|
206 | Base::iterator j=i; |
---|
207 | ++j; |
---|
208 | if ((*i).second==0) Base::erase(i); |
---|
209 | j=i; |
---|
210 | } |
---|
211 | } |
---|
212 | |
---|
213 | ///\e |
---|
214 | Expr &operator+=(const Expr &e) { |
---|
215 | for (Base::const_iterator j=e.begin(); j!=e.end(); ++j) |
---|
216 | (*this)[j->first]+=j->second; |
---|
217 | ///\todo it might be speeded up using "hints" |
---|
218 | const_comp+=e.const_comp; |
---|
219 | return *this; |
---|
220 | } |
---|
221 | ///\e |
---|
222 | Expr &operator-=(const Expr &e) { |
---|
223 | for (Base::const_iterator j=e.begin(); j!=e.end(); ++j) |
---|
224 | (*this)[j->first]-=j->second; |
---|
225 | const_comp-=e.const_comp; |
---|
226 | return *this; |
---|
227 | } |
---|
228 | ///\e |
---|
229 | Expr &operator*=(const Coeff &c) { |
---|
230 | for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) |
---|
231 | j->second*=c; |
---|
232 | const_comp*=c; |
---|
233 | return *this; |
---|
234 | } |
---|
235 | ///\e |
---|
236 | Expr &operator/=(const Coeff &c) { |
---|
237 | for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) |
---|
238 | j->second/=c; |
---|
239 | const_comp/=c; |
---|
240 | return *this; |
---|
241 | } |
---|
242 | }; |
---|
243 | |
---|
244 | ///Linear constraint |
---|
245 | //typedef LinConstr<Expr> Constr; |
---|
246 | class Constr |
---|
247 | { |
---|
248 | public: |
---|
249 | typedef LpSolverBase::Expr Expr; |
---|
250 | typedef Expr::Var Var; |
---|
251 | typedef Expr::Coeff Coeff; |
---|
252 | |
---|
253 | static const Coeff INF; |
---|
254 | static const Coeff NaN; |
---|
255 | // static const Coeff INF=0; |
---|
256 | // static const Coeff NaN=1; |
---|
257 | |
---|
258 | Expr expr; |
---|
259 | Coeff lb,ub; |
---|
260 | |
---|
261 | Constr() : expr(), lb(NaN), ub(NaN) {} |
---|
262 | Constr(Coeff _lb,const Expr &e,Coeff _ub) : |
---|
263 | expr(e), lb(_lb), ub(_ub) {} |
---|
264 | Constr(const Expr &e,Coeff _ub) : |
---|
265 | expr(e), lb(NaN), ub(_ub) {} |
---|
266 | Constr(Coeff _lb,const Expr &e) : |
---|
267 | expr(e), lb(_lb), ub(NaN) {} |
---|
268 | Constr(const Expr &e) : |
---|
269 | expr(e), lb(NaN), ub(NaN) {} |
---|
270 | }; |
---|
271 | |
---|
272 | |
---|
273 | protected: |
---|
274 | _FixId rows; |
---|
275 | _FixId cols; |
---|
276 | |
---|
277 | /// \e |
---|
278 | virtual int _addCol() = 0; |
---|
279 | /// \e |
---|
280 | virtual int _addRow() = 0; |
---|
281 | /// \e |
---|
282 | |
---|
283 | /// \warning Arrays are indexed from 1 (datum at index 0 is ignored) |
---|
284 | /// |
---|
285 | virtual void _setRowCoeffs(int i, |
---|
286 | int length, |
---|
287 | int const * indices, |
---|
288 | Value const * values ) = 0; |
---|
289 | /// \e |
---|
290 | |
---|
291 | /// \warning Arrays are indexed from 1 (datum at index 0 is ignored) |
---|
292 | /// |
---|
293 | virtual void _setColCoeffs(int i, |
---|
294 | int length, |
---|
295 | int const * indices, |
---|
296 | Value const * values ) = 0; |
---|
297 | |
---|
298 | /// \e |
---|
299 | |
---|
300 | /// The lower bound of a variable (column) have to be given by an |
---|
301 | /// extended number of type Value, i.e. a finite number of type |
---|
302 | /// Value or -\ref INF. |
---|
303 | virtual void _setColLowerBound(int i, Value value) = 0; |
---|
304 | /// \e |
---|
305 | |
---|
306 | /// The upper bound of a variable (column) have to be given by an |
---|
307 | /// extended number of type Value, i.e. a finite number of type |
---|
308 | /// Value or \ref INF. |
---|
309 | virtual void _setColUpperBound(int i, Value value) = 0; |
---|
310 | /// \e |
---|
311 | |
---|
312 | /// The lower bound of a linear expression (row) have to be given by an |
---|
313 | /// extended number of type Value, i.e. a finite number of type |
---|
314 | /// Value or -\ref INF. |
---|
315 | virtual void _setRowLowerBound(int i, Value value) = 0; |
---|
316 | /// \e |
---|
317 | |
---|
318 | /// The upper bound of a linear expression (row) have to be given by an |
---|
319 | /// extended number of type Value, i.e. a finite number of type |
---|
320 | /// Value or \ref INF. |
---|
321 | virtual void _setRowUpperBound(int i, Value value) = 0; |
---|
322 | |
---|
323 | /// \e |
---|
324 | virtual void _setObjCoeff(int i, Value obj_coef) = 0; |
---|
325 | |
---|
326 | ///\e |
---|
327 | |
---|
328 | ///\bug Wrong interface |
---|
329 | /// |
---|
330 | virtual SolutionType _solve() = 0; |
---|
331 | |
---|
332 | ///\e |
---|
333 | |
---|
334 | ///\bug Wrong interface |
---|
335 | /// |
---|
336 | virtual Value _getSolution(int i) = 0; |
---|
337 | ///\e |
---|
338 | |
---|
339 | ///\bug unimplemented!!!! |
---|
340 | void clearObj() {} |
---|
341 | public: |
---|
342 | |
---|
343 | |
---|
344 | ///\e |
---|
345 | virtual ~LpSolverBase() {} |
---|
346 | |
---|
347 | ///\name Building up and modification of the LP |
---|
348 | |
---|
349 | ///@{ |
---|
350 | |
---|
351 | ///Add a new empty column (i.e a new variable) to the LP |
---|
352 | Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;} |
---|
353 | |
---|
354 | ///\brief Fill the elements of a container with newly created columns |
---|
355 | ///(i.e a new variables) |
---|
356 | /// |
---|
357 | ///This magic function takes container as its argument |
---|
358 | ///and fills its elements |
---|
359 | ///with new columns (i.e. variables) |
---|
360 | ///\param t can be either any standard STL iterable container with |
---|
361 | ///\ref Col \c values_type or \c mapped_type |
---|
362 | ///like <tt>std::vector<LpSolverBase::Col></tt>, |
---|
363 | /// <tt>std::list<LpSolverBase::Col></tt> or |
---|
364 | /// <tt>std::map<AnyType,LpSolverBase::Col></tt> or |
---|
365 | ///it can be an iterable lemon map like |
---|
366 | /// <tt>ListGraph::NodeMap<LpSolverBase::Col></tt>. |
---|
367 | ///\return The number of the created column. |
---|
368 | ///\bug Iterable nodemap hasn't been implemented yet. |
---|
369 | #ifdef DOXYGEN |
---|
370 | template<class T> |
---|
371 | int addColSet(T &t) { return 0;} |
---|
372 | #else |
---|
373 | template<class T> |
---|
374 | typename enable_if<typename T::value_type::LpSolverCol,int>::type |
---|
375 | addColSet(T &t,dummy<0> = 0) { |
---|
376 | int s=0; |
---|
377 | for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} |
---|
378 | return s; |
---|
379 | } |
---|
380 | template<class T> |
---|
381 | typename enable_if<typename T::value_type::second_type::LpSolverCol, |
---|
382 | int>::type |
---|
383 | addColSet(T &t,dummy<1> = 1) { |
---|
384 | int s=0; |
---|
385 | for(typename T::iterator i=t.begin();i!=t.end();++i) { |
---|
386 | i->second=addCol(); |
---|
387 | s++; |
---|
388 | } |
---|
389 | return s; |
---|
390 | } |
---|
391 | template<class T> |
---|
392 | typename enable_if<typename T::ValueSet::value_type::LpSolverCol, |
---|
393 | int>::type |
---|
394 | addColSet(T &t,dummy<2> = 2) { |
---|
395 | ///\bug <tt>return addColSet(t.valueSet());</tt> should also work. |
---|
396 | int s=0; |
---|
397 | for(typename T::ValueSet::iterator i=t.valueSet().begin(); |
---|
398 | i!=t.valueSet().end(); |
---|
399 | ++i) |
---|
400 | { |
---|
401 | *i=addCol(); |
---|
402 | s++; |
---|
403 | } |
---|
404 | return s; |
---|
405 | } |
---|
406 | #endif |
---|
407 | |
---|
408 | ///Add a new empty row (i.e a new constaint) to the LP |
---|
409 | |
---|
410 | ///This function adds a new empty row (i.e a new constaint) to the LP. |
---|
411 | ///\return The created row |
---|
412 | Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;} |
---|
413 | |
---|
414 | ///Set a row (i.e a constaint) of the LP |
---|
415 | |
---|
416 | ///\param r is the row to be modified |
---|
417 | ///\param l is lower bound (-\ref INF means no bound) |
---|
418 | ///\param e is a linear expression (see \ref Expr) |
---|
419 | ///\param u is the upper bound (\ref INF means no bound) |
---|
420 | ///\bug This is a temportary function. The interface will change to |
---|
421 | ///a better one. |
---|
422 | void setRow(Row r, Value l,const Expr &e, Value u) { |
---|
423 | std::vector<int> indices; |
---|
424 | std::vector<Value> values; |
---|
425 | indices.push_back(0); |
---|
426 | values.push_back(0); |
---|
427 | for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i) |
---|
428 | if((*i).second!=0) { ///\bug EPSILON would be necessary here!!! |
---|
429 | indices.push_back(cols.floatingId((*i).first.id)); |
---|
430 | values.push_back((*i).second); |
---|
431 | } |
---|
432 | _setRowCoeffs(rows.floatingId(r.id),indices.size()-1, |
---|
433 | &indices[0],&values[0]); |
---|
434 | _setRowLowerBound(rows.floatingId(r.id),l-e.constComp()); |
---|
435 | _setRowUpperBound(rows.floatingId(r.id),u-e.constComp()); |
---|
436 | } |
---|
437 | |
---|
438 | ///Set a row (i.e a constaint) of the LP |
---|
439 | |
---|
440 | ///\param r is the row to be modified |
---|
441 | ///\param c is a linear expression (see \ref Constr) |
---|
442 | void setRow(Row r, const Constr &c) { |
---|
443 | Value lb= c.lb==NaN?-INF:lb; |
---|
444 | Value ub= c.ub==NaN?INF:lb; |
---|
445 | setRow(r,lb,c.expr,ub); |
---|
446 | } |
---|
447 | |
---|
448 | ///Add a new row (i.e a new constaint) to the LP |
---|
449 | |
---|
450 | ///\param l is the lower bound (-\ref INF means no bound) |
---|
451 | ///\param e is a linear expression (see \ref Expr) |
---|
452 | ///\param u is the upper bound (\ref INF means no bound) |
---|
453 | ///\return The created row. |
---|
454 | ///\bug This is a temportary function. The interface will change to |
---|
455 | ///a better one. |
---|
456 | Row addRow(Value l,const Expr &e, Value u) { |
---|
457 | Row r=addRow(); |
---|
458 | setRow(r,l,e,u); |
---|
459 | return r; |
---|
460 | } |
---|
461 | |
---|
462 | ///Add a new row (i.e a new constaint) to the LP |
---|
463 | |
---|
464 | ///\param c is a linear expression (see \ref Constr) |
---|
465 | ///\return The created row. |
---|
466 | Row addRow(const Constr &c) { |
---|
467 | Row r=addRow(); |
---|
468 | setRow(r,c); |
---|
469 | return r; |
---|
470 | } |
---|
471 | |
---|
472 | /// Set the lower bound of a column (i.e a variable) |
---|
473 | |
---|
474 | /// The upper bound of a variable (column) have to be given by an |
---|
475 | /// extended number of type Value, i.e. a finite number of type |
---|
476 | /// Value or -\ref INF. |
---|
477 | virtual void setColLowerBound(Col c, Value value) { |
---|
478 | _setColLowerBound(cols.floatingId(c.id),value); |
---|
479 | } |
---|
480 | /// Set the upper bound of a column (i.e a variable) |
---|
481 | |
---|
482 | /// The upper bound of a variable (column) have to be given by an |
---|
483 | /// extended number of type Value, i.e. a finite number of type |
---|
484 | /// Value or \ref INF. |
---|
485 | virtual void setColUpperBound(Col c, Value value) { |
---|
486 | _setColUpperBound(cols.floatingId(c.id),value); |
---|
487 | }; |
---|
488 | /// Set the lower bound of a row (i.e a constraint) |
---|
489 | |
---|
490 | /// The lower bound of a linear expression (row) have to be given by an |
---|
491 | /// extended number of type Value, i.e. a finite number of type |
---|
492 | /// Value or -\ref INF. |
---|
493 | virtual void setRowLowerBound(Row r, Value value) { |
---|
494 | _setRowLowerBound(rows.floatingId(r.id),value); |
---|
495 | }; |
---|
496 | /// Set the upper bound of a row (i.e a constraint) |
---|
497 | |
---|
498 | /// The upper bound of a linear expression (row) have to be given by an |
---|
499 | /// extended number of type Value, i.e. a finite number of type |
---|
500 | /// Value or \ref INF. |
---|
501 | virtual void setRowUpperBound(Row r, Value value) { |
---|
502 | _setRowUpperBound(rows.floatingId(r.id),value); |
---|
503 | }; |
---|
504 | ///Set an element of the objective function |
---|
505 | void setObjCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); }; |
---|
506 | ///Set the objective function |
---|
507 | |
---|
508 | ///\param e is a linear expression of type \ref Expr. |
---|
509 | ///\todo What to do with the constant component? |
---|
510 | void setObj(Expr e) { |
---|
511 | clearObj(); |
---|
512 | for (Expr::iterator i=e.begin(); i!=e.end(); ++i) |
---|
513 | setObjCoeff((*i).first,(*i).second); |
---|
514 | } |
---|
515 | |
---|
516 | ///@} |
---|
517 | |
---|
518 | |
---|
519 | ///\name Solving the LP |
---|
520 | |
---|
521 | ///@{ |
---|
522 | |
---|
523 | ///\e |
---|
524 | SolutionType solve() { return _solve(); } |
---|
525 | |
---|
526 | ///@} |
---|
527 | |
---|
528 | ///\name Obtaining the solution LP |
---|
529 | |
---|
530 | ///@{ |
---|
531 | |
---|
532 | ///\e |
---|
533 | Value solution(Col c) { return _getSolution(cols.floatingId(c.id)); } |
---|
534 | |
---|
535 | ///@} |
---|
536 | |
---|
537 | }; |
---|
538 | |
---|
539 | ///\e |
---|
540 | |
---|
541 | ///\relates LpSolverBase::Expr |
---|
542 | /// |
---|
543 | inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a, |
---|
544 | const LpSolverBase::Expr &b) |
---|
545 | { |
---|
546 | LpSolverBase::Expr tmp(a); |
---|
547 | tmp+=b; ///\todo Don't STL have some special 'merge' algorithm? |
---|
548 | return tmp; |
---|
549 | } |
---|
550 | ///\e |
---|
551 | |
---|
552 | ///\relates LpSolverBase::Expr |
---|
553 | /// |
---|
554 | inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a, |
---|
555 | const LpSolverBase::Expr &b) |
---|
556 | { |
---|
557 | LpSolverBase::Expr tmp(a); |
---|
558 | tmp-=b; ///\todo Don't STL have some special 'merge' algorithm? |
---|
559 | return tmp; |
---|
560 | } |
---|
561 | ///\e |
---|
562 | |
---|
563 | ///\relates LpSolverBase::Expr |
---|
564 | /// |
---|
565 | inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a, |
---|
566 | const LpSolverBase::Expr::Coeff &b) |
---|
567 | { |
---|
568 | LpSolverBase::Expr tmp(a); |
---|
569 | tmp*=b; ///\todo Don't STL have some special 'merge' algorithm? |
---|
570 | return tmp; |
---|
571 | } |
---|
572 | |
---|
573 | ///\e |
---|
574 | |
---|
575 | ///\relates LpSolverBase::Expr |
---|
576 | /// |
---|
577 | inline LpSolverBase::Expr operator*(const LpSolverBase::Expr::Coeff &a, |
---|
578 | const LpSolverBase::Expr &b) |
---|
579 | { |
---|
580 | LpSolverBase::Expr tmp(b); |
---|
581 | tmp*=a; ///\todo Don't STL have some special 'merge' algorithm? |
---|
582 | return tmp; |
---|
583 | } |
---|
584 | ///\e |
---|
585 | |
---|
586 | ///\relates LpSolverBase::Expr |
---|
587 | /// |
---|
588 | inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a, |
---|
589 | const LpSolverBase::Expr::Coeff &b) |
---|
590 | { |
---|
591 | LpSolverBase::Expr tmp(a); |
---|
592 | tmp/=b; ///\todo Don't STL have some special 'merge' algorithm? |
---|
593 | return tmp; |
---|
594 | } |
---|
595 | |
---|
596 | ///\e |
---|
597 | |
---|
598 | ///\relates LpSolverBase::Constr |
---|
599 | /// |
---|
600 | inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e, |
---|
601 | const LpSolverBase::Expr &f) |
---|
602 | { |
---|
603 | return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0); |
---|
604 | } |
---|
605 | |
---|
606 | ///\e |
---|
607 | |
---|
608 | ///\relates LpSolverBase::Constr |
---|
609 | /// |
---|
610 | inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr::Coeff &e, |
---|
611 | const LpSolverBase::Expr &f) |
---|
612 | { |
---|
613 | return LpSolverBase::Constr(e,f); |
---|
614 | } |
---|
615 | |
---|
616 | ///\e |
---|
617 | |
---|
618 | ///\relates LpSolverBase::Constr |
---|
619 | /// |
---|
620 | inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e, |
---|
621 | const LpSolverBase::Expr::Coeff &f) |
---|
622 | { |
---|
623 | return LpSolverBase::Constr(e,f); |
---|
624 | } |
---|
625 | |
---|
626 | ///\e |
---|
627 | |
---|
628 | ///\relates LpSolverBase::Constr |
---|
629 | /// |
---|
630 | inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e, |
---|
631 | const LpSolverBase::Expr &f) |
---|
632 | { |
---|
633 | return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0); |
---|
634 | } |
---|
635 | |
---|
636 | |
---|
637 | ///\e |
---|
638 | |
---|
639 | ///\relates LpSolverBase::Constr |
---|
640 | /// |
---|
641 | inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr::Coeff &e, |
---|
642 | const LpSolverBase::Expr &f) |
---|
643 | { |
---|
644 | return LpSolverBase::Constr(f,e); |
---|
645 | } |
---|
646 | |
---|
647 | |
---|
648 | ///\e |
---|
649 | |
---|
650 | ///\relates LpSolverBase::Constr |
---|
651 | /// |
---|
652 | inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e, |
---|
653 | const LpSolverBase::Expr::Coeff &f) |
---|
654 | { |
---|
655 | return LpSolverBase::Constr(f,e); |
---|
656 | } |
---|
657 | |
---|
658 | ///\e |
---|
659 | |
---|
660 | ///\relates LpSolverBase::Constr |
---|
661 | /// |
---|
662 | inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e, |
---|
663 | const LpSolverBase::Expr &f) |
---|
664 | { |
---|
665 | return LpSolverBase::Constr(0,e-f,0); |
---|
666 | } |
---|
667 | |
---|
668 | ///\e |
---|
669 | |
---|
670 | ///\relates LpSolverBase::Constr |
---|
671 | /// |
---|
672 | inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr::Coeff &n, |
---|
673 | const LpSolverBase::Constr&c) |
---|
674 | { |
---|
675 | LpSolverBase::Constr tmp(c); |
---|
676 | if(tmp.lb!=tmp.NaN) throw LogicError(); |
---|
677 | else tmp.lb=n; |
---|
678 | return tmp; |
---|
679 | } |
---|
680 | ///\e |
---|
681 | |
---|
682 | ///\relates LpSolverBase::Constr |
---|
683 | /// |
---|
684 | inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c, |
---|
685 | const LpSolverBase::Constr::Coeff &n) |
---|
686 | { |
---|
687 | LpSolverBase::Constr tmp(c); |
---|
688 | if(tmp.ub!=tmp.NaN) throw LogicError(); |
---|
689 | else tmp.ub=n; |
---|
690 | return tmp; |
---|
691 | } |
---|
692 | |
---|
693 | ///\e |
---|
694 | |
---|
695 | ///\relates LpSolverBase::Constr |
---|
696 | /// |
---|
697 | inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr::Coeff &n, |
---|
698 | const LpSolverBase::Constr&c) |
---|
699 | { |
---|
700 | LpSolverBase::Constr tmp(c); |
---|
701 | if(tmp.ub!=tmp.NaN) throw LogicError(); |
---|
702 | else tmp.ub=n; |
---|
703 | return tmp; |
---|
704 | } |
---|
705 | ///\e |
---|
706 | |
---|
707 | ///\relates LpSolverBase::Constr |
---|
708 | /// |
---|
709 | inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c, |
---|
710 | const LpSolverBase::Constr::Coeff &n) |
---|
711 | { |
---|
712 | LpSolverBase::Constr tmp(c); |
---|
713 | if(tmp.lb!=tmp.NaN) throw LogicError(); |
---|
714 | else tmp.lb=n; |
---|
715 | return tmp; |
---|
716 | } |
---|
717 | |
---|
718 | |
---|
719 | } //namespace lemon |
---|
720 | |
---|
721 | #endif //LEMON_LP_BASE_H |
---|