[610] | 1 | // -*- c++ -*- |
---|
[633] | 2 | #ifndef HUGO_MINCOSTFLOW_H |
---|
| 3 | #define HUGO_MINCOSTFLOW_H |
---|
[610] | 4 | |
---|
| 5 | ///\ingroup galgs |
---|
| 6 | ///\file |
---|
| 7 | ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost |
---|
| 8 | |
---|
[611] | 9 | |
---|
[610] | 10 | #include <hugo/dijkstra.h> |
---|
| 11 | #include <hugo/graph_wrapper.h> |
---|
| 12 | #include <hugo/maps.h> |
---|
| 13 | #include <vector> |
---|
| 14 | #include <for_each_macros.h> |
---|
| 15 | |
---|
| 16 | namespace hugo { |
---|
| 17 | |
---|
| 18 | /// \addtogroup galgs |
---|
| 19 | /// @{ |
---|
| 20 | |
---|
| 21 | ///\brief Implementation of an algorithm for finding a flow of value \c k |
---|
| 22 | ///(for small values of \c k) having minimal total cost between 2 nodes |
---|
| 23 | /// |
---|
| 24 | /// |
---|
[633] | 25 | /// The class \ref hugo::MinCostFlow "MinCostFlow" implements |
---|
| 26 | /// an algorithm for solving the following general minimum cost flow problem> |
---|
| 27 | /// |
---|
| 28 | /// |
---|
| 29 | /// |
---|
| 30 | /// \warning It is assumed here that the problem has a feasible solution |
---|
| 31 | /// |
---|
[610] | 32 | /// The range of the length (weight) function is nonnegative reals but |
---|
| 33 | /// the range of capacity function is the set of nonnegative integers. |
---|
| 34 | /// It is not a polinomial time algorithm for counting the minimum cost |
---|
| 35 | /// maximal flow, since it counts the minimum cost flow for every value 0..M |
---|
| 36 | /// where \c M is the value of the maximal flow. |
---|
| 37 | /// |
---|
| 38 | ///\author Attila Bernath |
---|
[635] | 39 | template <typename Graph, typename LengthMap, typename SupplyDemandMap> |
---|
[633] | 40 | class MinCostFlow { |
---|
[610] | 41 | |
---|
| 42 | typedef typename LengthMap::ValueType Length; |
---|
| 43 | |
---|
[633] | 44 | |
---|
[635] | 45 | typedef typename SupplyDemandMap::ValueType SupplyDemand; |
---|
[610] | 46 | |
---|
| 47 | typedef typename Graph::Node Node; |
---|
| 48 | typedef typename Graph::NodeIt NodeIt; |
---|
| 49 | typedef typename Graph::Edge Edge; |
---|
| 50 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 51 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
| 52 | |
---|
| 53 | // typedef ConstMap<Edge,int> ConstMap; |
---|
| 54 | |
---|
| 55 | typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType; |
---|
| 56 | typedef typename ResGraphType::Edge ResGraphEdge; |
---|
| 57 | |
---|
| 58 | class ModLengthMap { |
---|
| 59 | //typedef typename ResGraphType::template NodeMap<Length> NodeMap; |
---|
| 60 | typedef typename Graph::template NodeMap<Length> NodeMap; |
---|
| 61 | const ResGraphType& G; |
---|
| 62 | // const EdgeIntMap& rev; |
---|
| 63 | const LengthMap &ol; |
---|
| 64 | const NodeMap &pot; |
---|
| 65 | public : |
---|
| 66 | typedef typename LengthMap::KeyType KeyType; |
---|
| 67 | typedef typename LengthMap::ValueType ValueType; |
---|
| 68 | |
---|
| 69 | ValueType operator[](typename ResGraphType::Edge e) const { |
---|
| 70 | if (G.forward(e)) |
---|
| 71 | return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
---|
| 72 | else |
---|
| 73 | return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
---|
| 74 | } |
---|
| 75 | |
---|
| 76 | ModLengthMap(const ResGraphType& _G, |
---|
| 77 | const LengthMap &o, const NodeMap &p) : |
---|
| 78 | G(_G), /*rev(_rev),*/ ol(o), pot(p){}; |
---|
| 79 | };//ModLengthMap |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | protected: |
---|
| 83 | |
---|
| 84 | //Input |
---|
| 85 | const Graph& G; |
---|
| 86 | const LengthMap& length; |
---|
[635] | 87 | const SupplyDemandMap& supply_demand;//supply or demand of nodes |
---|
[610] | 88 | |
---|
| 89 | |
---|
| 90 | //auxiliary variables |
---|
| 91 | |
---|
| 92 | //To store the flow |
---|
| 93 | EdgeIntMap flow; |
---|
| 94 | //To store the potentila (dual variables) |
---|
| 95 | typename Graph::template NodeMap<Length> potential; |
---|
[633] | 96 | //To store excess-deficit values |
---|
[635] | 97 | SupplyDemandMap excess_deficit; |
---|
[610] | 98 | |
---|
| 99 | |
---|
| 100 | Length total_length; |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | public : |
---|
| 104 | |
---|
| 105 | |
---|
[635] | 106 | MinCostFlow(Graph& _G, LengthMap& _length, SupplyDemandMap& _supply_demand) : G(_G), |
---|
| 107 | length(_length), supply_demand(_supply_demand), flow(_G), potential(_G){ } |
---|
[610] | 108 | |
---|
| 109 | |
---|
| 110 | ///Runs the algorithm. |
---|
| 111 | |
---|
| 112 | ///Runs the algorithm. |
---|
[635] | 113 | |
---|
[610] | 114 | ///\todo May be it does make sense to be able to start with a nonzero |
---|
| 115 | /// feasible primal-dual solution pair as well. |
---|
[633] | 116 | int run() { |
---|
[610] | 117 | |
---|
| 118 | //Resetting variables from previous runs |
---|
[635] | 119 | //total_length = 0; |
---|
| 120 | |
---|
| 121 | typedef typename Graph::template NodeMap<int> HeapMap; |
---|
| 122 | typedef Heap<Node, SupplyDemand, typename Graph::template NodeMap<int>, |
---|
| 123 | std::greater<SupplyDemand> > HeapType; |
---|
| 124 | |
---|
| 125 | //A heap for the excess nodes |
---|
| 126 | HeapMap excess_nodes_map(G,-1); |
---|
| 127 | HeapType excess_nodes(excess_nodes_map); |
---|
| 128 | |
---|
| 129 | //A heap for the deficit nodes |
---|
| 130 | HeapMap deficit_nodes_map(G,-1); |
---|
| 131 | HeapType deficit_nodes(deficit_nodes_map); |
---|
| 132 | |
---|
[610] | 133 | |
---|
| 134 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ |
---|
| 135 | flow.set(e,0); |
---|
| 136 | } |
---|
[633] | 137 | |
---|
| 138 | //Initial value for delta |
---|
[635] | 139 | SupplyDemand delta = 0; |
---|
| 140 | |
---|
[610] | 141 | FOR_EACH_LOC(typename Graph::NodeIt, n, G){ |
---|
[635] | 142 | excess_deficit.set(n,supply_demand[n]); |
---|
| 143 | //A supply node |
---|
| 144 | if (excess_deficit[n] > 0){ |
---|
| 145 | excess_nodes.push(n,excess_deficit[n]); |
---|
[633] | 146 | } |
---|
[635] | 147 | //A demand node |
---|
| 148 | if (excess_deficit[n] < 0){ |
---|
| 149 | deficit_nodes.push(n, - excess_deficit[n]); |
---|
| 150 | } |
---|
| 151 | //Finding out starting value of delta |
---|
| 152 | if (delta < abs(excess_deficit[n])){ |
---|
| 153 | delta = abs(excess_deficit[n]); |
---|
| 154 | } |
---|
[633] | 155 | //Initialize the copy of the Dijkstra potential to zero |
---|
[610] | 156 | potential.set(n,0); |
---|
| 157 | } |
---|
| 158 | |
---|
[635] | 159 | //It'll be allright as an initial value, though this value |
---|
| 160 | //can be the maximum deficit here |
---|
| 161 | SupplyDemand max_excess = delta; |
---|
[610] | 162 | |
---|
[633] | 163 | //We need a residual graph which is uncapacitated |
---|
| 164 | ResGraphType res_graph(G, flow); |
---|
[610] | 165 | |
---|
[633] | 166 | |
---|
[610] | 167 | |
---|
| 168 | ModLengthMap mod_length(res_graph, length, potential); |
---|
| 169 | |
---|
| 170 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); |
---|
| 171 | |
---|
[633] | 172 | |
---|
[635] | 173 | while (max_excess > 0){ |
---|
| 174 | |
---|
[610] | 175 | |
---|
[635] | 176 | //Merge and stuff |
---|
| 177 | |
---|
| 178 | Node s = excess_nodes.top(); |
---|
| 179 | SupplyDemand max_excess = excess_nodes[s]; |
---|
| 180 | Node t = deficit_nodes.top(); |
---|
| 181 | if (max_excess < dificit_nodes[t]){ |
---|
| 182 | max_excess = dificit_nodes[t]; |
---|
| 183 | } |
---|
| 184 | |
---|
| 185 | |
---|
| 186 | while(max_excess > ){ |
---|
| 187 | |
---|
| 188 | |
---|
| 189 | //s es t valasztasa |
---|
| 190 | |
---|
| 191 | //Dijkstra part |
---|
| 192 | dijkstra.run(s); |
---|
| 193 | |
---|
| 194 | /*We know from theory that t can be reached |
---|
| 195 | if (!dijkstra.reached(t)){ |
---|
| 196 | //There are no k paths from s to t |
---|
| 197 | break; |
---|
| 198 | }; |
---|
| 199 | */ |
---|
| 200 | |
---|
| 201 | //We have to change the potential |
---|
| 202 | FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){ |
---|
| 203 | potential[n] += dijkstra.distMap()[n]; |
---|
| 204 | } |
---|
| 205 | |
---|
| 206 | |
---|
| 207 | //Augmenting on the sortest path |
---|
| 208 | Node n=t; |
---|
| 209 | ResGraphEdge e; |
---|
| 210 | while (n!=s){ |
---|
| 211 | e = dijkstra.pred(n); |
---|
| 212 | n = dijkstra.predNode(n); |
---|
| 213 | res_graph.augment(e,delta); |
---|
| 214 | /* |
---|
| 215 | //Let's update the total length |
---|
| 216 | if (res_graph.forward(e)) |
---|
| 217 | total_length += length[e]; |
---|
| 218 | else |
---|
| 219 | total_length -= length[e]; |
---|
| 220 | */ |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | //Update the excess_nodes heap |
---|
| 224 | if (delta >= excess_nodes[s]){ |
---|
| 225 | if (delta > excess_nodes[s]) |
---|
| 226 | deficit_nodes.push(s,delta - excess_nodes[s]); |
---|
| 227 | excess_nodes.pop(); |
---|
| 228 | |
---|
| 229 | } |
---|
| 230 | else{ |
---|
| 231 | excess_nodes[s] -= delta; |
---|
| 232 | } |
---|
| 233 | //Update the deficit_nodes heap |
---|
| 234 | if (delta >= deficit_nodes[t]){ |
---|
| 235 | if (delta > deficit_nodes[t]) |
---|
| 236 | excess_nodes.push(t,delta - deficit_nodes[t]); |
---|
| 237 | deficit_nodes.pop(); |
---|
| 238 | |
---|
| 239 | } |
---|
| 240 | else{ |
---|
| 241 | deficit_nodes[t] -= delta; |
---|
| 242 | } |
---|
| 243 | //Dijkstra part ends here |
---|
[633] | 244 | } |
---|
| 245 | |
---|
| 246 | /* |
---|
[635] | 247 | * End of the delta scaling phase |
---|
| 248 | */ |
---|
[633] | 249 | |
---|
[635] | 250 | //Whatever this means |
---|
| 251 | delta = delta / 2; |
---|
| 252 | |
---|
| 253 | /*This is not necessary here |
---|
| 254 | //Update the max_excess |
---|
| 255 | max_excess = 0; |
---|
| 256 | FOR_EACH_LOC(typename Graph::NodeIt, n, G){ |
---|
| 257 | if (max_excess < excess_deficit[n]){ |
---|
| 258 | max_excess = excess_deficit[n]; |
---|
[610] | 259 | } |
---|
| 260 | } |
---|
[633] | 261 | */ |
---|
[635] | 262 | //Reset delta if still too big |
---|
| 263 | if (8*number_of_nodes*max_excess <= delta){ |
---|
| 264 | delta = max_excess; |
---|
| 265 | |
---|
[610] | 266 | } |
---|
| 267 | |
---|
[635] | 268 | }//while(max_excess > 0) |
---|
[610] | 269 | |
---|
| 270 | |
---|
| 271 | return i; |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | |
---|
| 277 | ///This function gives back the total length of the found paths. |
---|
| 278 | ///Assumes that \c run() has been run and nothing changed since then. |
---|
| 279 | Length totalLength(){ |
---|
| 280 | return total_length; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must |
---|
| 284 | ///be called before using this function. |
---|
| 285 | const EdgeIntMap &getFlow() const { return flow;} |
---|
| 286 | |
---|
| 287 | ///Returns a const reference to the NodeMap \c potential (the dual solution). |
---|
| 288 | /// \pre \ref run() must be called before using this function. |
---|
| 289 | const EdgeIntMap &getPotential() const { return potential;} |
---|
| 290 | |
---|
| 291 | ///This function checks, whether the given solution is optimal |
---|
| 292 | ///Running after a \c run() should return with true |
---|
| 293 | ///In this "state of the art" this only check optimality, doesn't bother with feasibility |
---|
| 294 | /// |
---|
| 295 | ///\todo Is this OK here? |
---|
| 296 | bool checkComplementarySlackness(){ |
---|
| 297 | Length mod_pot; |
---|
| 298 | Length fl_e; |
---|
| 299 | FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ |
---|
| 300 | //C^{\Pi}_{i,j} |
---|
| 301 | mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)]; |
---|
| 302 | fl_e = flow[e]; |
---|
| 303 | // std::cout << fl_e << std::endl; |
---|
| 304 | if (0<fl_e && fl_e<capacity[e]){ |
---|
| 305 | if (mod_pot != 0) |
---|
| 306 | return false; |
---|
| 307 | } |
---|
| 308 | else{ |
---|
| 309 | if (mod_pot > 0 && fl_e != 0) |
---|
| 310 | return false; |
---|
| 311 | if (mod_pot < 0 && fl_e != capacity[e]) |
---|
| 312 | return false; |
---|
| 313 | } |
---|
| 314 | } |
---|
| 315 | return true; |
---|
| 316 | } |
---|
| 317 | |
---|
| 318 | |
---|
[633] | 319 | }; //class MinCostFlow |
---|
[610] | 320 | |
---|
| 321 | ///@} |
---|
| 322 | |
---|
| 323 | } //namespace hugo |
---|
| 324 | |
---|
| 325 | #endif //HUGO_MINCOSTFLOW_H |
---|