[276] | 1 | // -*- c++ -*- |
---|
[306] | 2 | #ifndef HUGO_MINLENGTHPATHS_H |
---|
| 3 | #define HUGO_MINLENGTHPATHS_H |
---|
[276] | 4 | |
---|
[294] | 5 | ///\file |
---|
[306] | 6 | ///\brief An algorithm for finding k paths of minimal total length. |
---|
[294] | 7 | |
---|
[276] | 8 | #include <iostream> |
---|
| 9 | #include <dijkstra.h> |
---|
| 10 | #include <graph_wrapper.h> |
---|
[306] | 11 | #include <maps.h> |
---|
| 12 | |
---|
[276] | 13 | namespace hugo { |
---|
| 14 | |
---|
| 15 | |
---|
[310] | 16 | ///\brief Implementation of an algorithm for finding k paths between 2 nodes |
---|
[306] | 17 | /// of minimal total length |
---|
[310] | 18 | /// |
---|
| 19 | /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements |
---|
| 20 | /// an algorithm which finds k edge-disjoint paths |
---|
| 21 | /// from a given source node to a given target node in an |
---|
| 22 | /// edge-weighted directed graph having minimal total weigth (length). |
---|
[276] | 23 | |
---|
[310] | 24 | template <typename Graph, typename LengthMap> |
---|
[306] | 25 | class MinLengthPaths { |
---|
[276] | 26 | |
---|
[310] | 27 | typedef typename LengthMap::ValueType Length; |
---|
[276] | 28 | |
---|
| 29 | typedef typename Graph::Node Node; |
---|
| 30 | typedef typename Graph::NodeIt NodeIt; |
---|
| 31 | typedef typename Graph::Edge Edge; |
---|
| 32 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
[306] | 33 | typedef typename Graph::EdgeMap<int> EdgeIntMap; |
---|
| 34 | |
---|
| 35 | typedef ConstMap<Edge,int> ConstMap; |
---|
| 36 | |
---|
[310] | 37 | typedef ResGraphWrapper<const Graph,int,EdgeIntMap,ConstMap> ResGraphType; |
---|
[276] | 38 | |
---|
[306] | 39 | |
---|
| 40 | class ModLengthMap { |
---|
[310] | 41 | typedef typename ResGraphType::NodeMap<Length> NodeMap; |
---|
[306] | 42 | const ResGraphType& G; |
---|
[310] | 43 | const EdgeIntMap& rev; |
---|
| 44 | const LengthMap &ol; |
---|
| 45 | const NodeMap &pot; |
---|
[306] | 46 | public : |
---|
| 47 | typedef typename LengthMap::KeyType KeyType; |
---|
| 48 | typedef typename LengthMap::ValueType ValueType; |
---|
| 49 | |
---|
| 50 | ValueType operator[](typename ResGraphType::Edge e) const { |
---|
| 51 | if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){ |
---|
| 52 | ///\TODO This has to be removed |
---|
| 53 | std::cout<<"Negative length!!"<<std::endl; |
---|
| 54 | } |
---|
| 55 | return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
---|
| 56 | } |
---|
| 57 | |
---|
[310] | 58 | ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, |
---|
| 59 | const LengthMap &o, const NodeMap &p) : |
---|
[306] | 60 | G(_G), rev(_rev), ol(o), pot(p){}; |
---|
| 61 | }; |
---|
| 62 | |
---|
| 63 | |
---|
[276] | 64 | const Graph& G; |
---|
| 65 | const LengthMap& length; |
---|
| 66 | |
---|
[314] | 67 | //auxiliry variable |
---|
| 68 | //The value is 1 iff the edge is reversed. |
---|
| 69 | //If the algorithm has finished, the edges of the seeked paths are |
---|
| 70 | //exactly those that are reversed |
---|
[306] | 71 | EdgeIntMap reversed; |
---|
[276] | 72 | |
---|
| 73 | public : |
---|
[310] | 74 | |
---|
[276] | 75 | |
---|
[306] | 76 | MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), |
---|
| 77 | length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ } |
---|
[276] | 78 | |
---|
[306] | 79 | ///Runs the algorithm |
---|
[294] | 80 | |
---|
[306] | 81 | ///Runs the algorithm |
---|
| 82 | ///Returns k if there are at least k edge-disjoint paths from s to t. |
---|
| 83 | ///Otherwise it returns the number of edge-disjoint paths from s to t. |
---|
| 84 | int run(Node s, Node t, int k) { |
---|
| 85 | ConstMap const1map(1); |
---|
[276] | 86 | |
---|
[314] | 87 | //We need a residual graph, in which some of the edges are reversed |
---|
[306] | 88 | ResGraphType res_graph(G, reversed, const1map); |
---|
| 89 | |
---|
| 90 | //Initialize the copy of the Dijkstra potential to zero |
---|
[310] | 91 | typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph); |
---|
| 92 | ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist); |
---|
[306] | 93 | |
---|
| 94 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); |
---|
[276] | 95 | |
---|
| 96 | for (int i=0; i<k; ++i){ |
---|
| 97 | dijkstra.run(s); |
---|
| 98 | if (!dijkstra.reached(t)){ |
---|
[314] | 99 | //There are no k paths from s to t |
---|
[310] | 100 | return i; |
---|
[276] | 101 | }; |
---|
[306] | 102 | |
---|
| 103 | { |
---|
| 104 | //We have to copy the potential |
---|
| 105 | typename ResGraphType::NodeIt n; |
---|
| 106 | for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { |
---|
| 107 | dijkstra_dist[n] += dijkstra.distMap()[n]; |
---|
| 108 | } |
---|
| 109 | } |
---|
| 110 | |
---|
| 111 | |
---|
[276] | 112 | //Reversing the sortest path |
---|
| 113 | Node n=t; |
---|
| 114 | Edge e; |
---|
| 115 | while (n!=s){ |
---|
[291] | 116 | e = dijkstra.pred(n); |
---|
| 117 | n = dijkstra.predNode(n); |
---|
[276] | 118 | reversed[e] = 1-reversed[e]; |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | } |
---|
[306] | 123 | return k; |
---|
[276] | 124 | } |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | |
---|
| 129 | |
---|
[310] | 130 | }; //class MinLengthPaths |
---|
[276] | 131 | |
---|
| 132 | |
---|
| 133 | } //namespace hugo |
---|
| 134 | |
---|
[306] | 135 | #endif //HUGO_MINLENGTHPATHS_H |
---|