[601] | 1 | // -*- c++ -*- |
---|
| 2 | #ifndef HUGO_MINLENGTHPATHS_H |
---|
| 3 | #define HUGO_MINLENGTHPATHS_H |
---|
| 4 | |
---|
| 5 | ///\ingroup galgs |
---|
| 6 | ///\file |
---|
| 7 | ///\brief An algorithm for finding k paths of minimal total length. |
---|
| 8 | |
---|
| 9 | #include <iostream> |
---|
| 10 | #include <dijkstra.h> |
---|
| 11 | #include <graph_wrapper.h> |
---|
| 12 | #include <maps.h> |
---|
| 13 | #include <vector.h> |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | namespace hugo { |
---|
| 17 | |
---|
| 18 | /// \addtogroup galgs |
---|
| 19 | /// @{ |
---|
| 20 | |
---|
| 21 | ///\brief Implementation of an algorithm for finding k paths between 2 nodes |
---|
| 22 | /// of minimal total length |
---|
| 23 | /// |
---|
| 24 | /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements |
---|
| 25 | /// an algorithm for finding k edge-disjoint paths |
---|
| 26 | /// from a given source node to a given target node in an |
---|
| 27 | /// edge-weighted directed graph having minimal total weigth (length). |
---|
| 28 | /// |
---|
| 29 | ///\author Attila Bernath |
---|
| 30 | template <typename Graph, typename LengthMap> |
---|
| 31 | class MinLengthPaths { |
---|
| 32 | |
---|
| 33 | typedef typename LengthMap::ValueType Length; |
---|
| 34 | |
---|
| 35 | typedef typename Graph::Node Node; |
---|
| 36 | typedef typename Graph::NodeIt NodeIt; |
---|
| 37 | typedef typename Graph::Edge Edge; |
---|
| 38 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 39 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
| 40 | |
---|
| 41 | typedef ConstMap<Edge,int> ConstMap; |
---|
| 42 | |
---|
| 43 | typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType; |
---|
| 44 | |
---|
| 45 | class ModLengthMap { |
---|
| 46 | typedef typename ResGraphType::template NodeMap<Length> NodeMap; |
---|
| 47 | const ResGraphType& G; |
---|
| 48 | const EdgeIntMap& rev; |
---|
| 49 | const LengthMap &ol; |
---|
| 50 | const NodeMap &pot; |
---|
| 51 | public : |
---|
| 52 | typedef typename LengthMap::KeyType KeyType; |
---|
| 53 | typedef typename LengthMap::ValueType ValueType; |
---|
| 54 | |
---|
| 55 | ValueType operator[](typename ResGraphType::Edge e) const { |
---|
| 56 | //if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){ |
---|
| 57 | // std::cout<<"Negative length!!"<<std::endl; |
---|
| 58 | //} |
---|
| 59 | return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, |
---|
| 63 | const LengthMap &o, const NodeMap &p) : |
---|
| 64 | G(_G), rev(_rev), ol(o), pot(p){}; |
---|
| 65 | };//ModLengthMap |
---|
| 66 | |
---|
| 67 | |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | const Graph& G; |
---|
| 71 | const LengthMap& length; |
---|
| 72 | |
---|
| 73 | //auxiliary variables |
---|
| 74 | |
---|
| 75 | //The value is 1 iff the edge is reversed. |
---|
| 76 | //If the algorithm has finished, the edges of the seeked paths are |
---|
| 77 | //exactly those that are reversed |
---|
| 78 | EdgeIntMap reversed; |
---|
| 79 | |
---|
| 80 | //Container to store found paths |
---|
| 81 | std::vector< std::vector<Edge> > paths; |
---|
| 82 | //typedef DirPath<Graph> DPath; |
---|
| 83 | //DPath paths; |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | Length total_length; |
---|
| 87 | |
---|
| 88 | public : |
---|
| 89 | |
---|
| 90 | |
---|
| 91 | MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), |
---|
| 92 | length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ } |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | ///Runs the algorithm. |
---|
| 96 | |
---|
| 97 | ///Runs the algorithm. |
---|
| 98 | ///Returns k if there are at least k edge-disjoint paths from s to t. |
---|
| 99 | ///Otherwise it returns the number of found edge-disjoint paths from s to t. |
---|
| 100 | int run(Node s, Node t, int k) { |
---|
| 101 | ConstMap const1map(1); |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | //We need a residual graph, in which some of the edges are reversed |
---|
| 105 | ResGraphType res_graph(G, const1map, reversed); |
---|
| 106 | |
---|
| 107 | //Initialize the copy of the Dijkstra potential to zero |
---|
| 108 | typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph); |
---|
| 109 | ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist); |
---|
| 110 | |
---|
| 111 | Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); |
---|
| 112 | |
---|
| 113 | int i; |
---|
| 114 | for (i=0; i<k; ++i){ |
---|
| 115 | dijkstra.run(s); |
---|
| 116 | if (!dijkstra.reached(t)){ |
---|
| 117 | //There are no k paths from s to t |
---|
| 118 | break; |
---|
| 119 | }; |
---|
| 120 | |
---|
| 121 | { |
---|
| 122 | //We have to copy the potential |
---|
| 123 | typename ResGraphType::NodeIt n; |
---|
| 124 | for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { |
---|
| 125 | dijkstra_dist[n] += dijkstra.distMap()[n]; |
---|
| 126 | } |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | //Reversing the sortest path |
---|
| 131 | Node n=t; |
---|
| 132 | Edge e; |
---|
| 133 | while (n!=s){ |
---|
| 134 | e = dijkstra.pred(n); |
---|
| 135 | n = dijkstra.predNode(n); |
---|
| 136 | reversed[e] = 1-reversed[e]; |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | } |
---|
| 141 | |
---|
| 142 | //Let's find the paths |
---|
| 143 | //We put the paths into stl vectors (as an inner representation). |
---|
| 144 | //In the meantime we lose the information stored in 'reversed'. |
---|
| 145 | //We suppose the lengths to be positive now. |
---|
| 146 | |
---|
| 147 | //Meanwhile we put the total length of the found paths |
---|
| 148 | //in the member variable total_length |
---|
| 149 | paths.clear(); |
---|
| 150 | total_length=0; |
---|
| 151 | paths.resize(k); |
---|
| 152 | for (int j=0; j<i; ++j){ |
---|
| 153 | Node n=s; |
---|
| 154 | OutEdgeIt e; |
---|
| 155 | |
---|
| 156 | while (n!=t){ |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | G.first(e,n); |
---|
| 160 | |
---|
| 161 | while (!reversed[e]){ |
---|
| 162 | G.next(e); |
---|
| 163 | } |
---|
| 164 | n = G.head(e); |
---|
| 165 | paths[j].push_back(e); |
---|
| 166 | total_length += length[e]; |
---|
| 167 | reversed[e] = 1-reversed[e]; |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | return i; |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | ///This function gives back the total length of the found paths. |
---|
| 176 | ///Assumes that \c run() has been run and nothing changed since then. |
---|
| 177 | Length totalLength(){ |
---|
| 178 | return total_length; |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | ///This function gives back the \c j-th path in argument p. |
---|
| 182 | ///Assumes that \c run() has been run and nothing changed since then. |
---|
| 183 | /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path. |
---|
| 184 | template<typename DirPath> |
---|
| 185 | void getPath(DirPath& p, int j){ |
---|
| 186 | p.clear(); |
---|
| 187 | typename DirPath::Builder B(p); |
---|
| 188 | for(typename std::vector<Edge>::iterator i=paths[j].begin(); |
---|
| 189 | i!=paths[j].end(); ++i ){ |
---|
| 190 | B.pushBack(*i); |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | B.commit(); |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | }; //class MinLengthPaths |
---|
| 197 | |
---|
| 198 | ///@} |
---|
| 199 | |
---|
| 200 | } //namespace hugo |
---|
| 201 | |
---|
| 202 | #endif //HUGO_MINLENGTHPATHS_H |
---|