1 | #ifndef HUGO_PREFLOW_PUSH_HH |
---|
2 | #define HUGO_PREFLOW_PUSH_HH |
---|
3 | |
---|
4 | //#include <algorithm> |
---|
5 | #include <list> |
---|
6 | #include <vector> |
---|
7 | #include <queue> |
---|
8 | //#include "pf_hiba.hh" |
---|
9 | //#include <marci_list_graph.hh> |
---|
10 | //#include <marci_graph_traits.hh> |
---|
11 | #include <invalid.h> |
---|
12 | #include <graph_wrapper.h> |
---|
13 | //#include <reverse_bfs.hh> |
---|
14 | |
---|
15 | using namespace std; |
---|
16 | |
---|
17 | namespace hugo { |
---|
18 | |
---|
19 | template <typename Graph, typename T> |
---|
20 | class preflow_push { |
---|
21 | |
---|
22 | //Useful typedefs |
---|
23 | typedef typename Graph::Node Node; |
---|
24 | typedef typename Graph::NodeIt NodeIt; |
---|
25 | typedef typename Graph::Edge Edge; |
---|
26 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
27 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
28 | typedef typename Graph::EdgeMap<T> CapacityType; |
---|
29 | |
---|
30 | typedef ResGraphWrapper<const Graph,int,CapacityType,CapacityType> ResGraphType; |
---|
31 | |
---|
32 | |
---|
33 | //--------------------------------------------- |
---|
34 | //Parameters of the algorithm |
---|
35 | //--------------------------------------------- |
---|
36 | //Fully examine an active node until excess becomes 0 |
---|
37 | enum node_examination_t {examine_full, examine_to_relabel}; |
---|
38 | //No more implemented yet:, examine_only_one_edge}; |
---|
39 | node_examination_t node_examination; |
---|
40 | //Which implementation to be used |
---|
41 | enum implementation_t {impl_fifo, impl_highest_label}; |
---|
42 | //No more implemented yet:}; |
---|
43 | implementation_t implementation; |
---|
44 | //--------------------------------------------- |
---|
45 | //Parameters of the algorithm |
---|
46 | //--------------------------------------------- |
---|
47 | |
---|
48 | private: |
---|
49 | //input |
---|
50 | Graph& G; |
---|
51 | Node s; |
---|
52 | Node t; |
---|
53 | CapacityType &capacity; |
---|
54 | |
---|
55 | //output |
---|
56 | CapacityType preflow; |
---|
57 | T maxflow_value; |
---|
58 | |
---|
59 | //auxiliary variables for computation |
---|
60 | //The number of the nodes |
---|
61 | int number_of_nodes; |
---|
62 | //A nodemap for the level |
---|
63 | typename Graph::NodeMap<int> level; |
---|
64 | //A nodemap for the excess |
---|
65 | typename Graph::NodeMap<T> excess; |
---|
66 | |
---|
67 | //Number of nodes on each level |
---|
68 | vector<int> num_of_nodes_on_level; |
---|
69 | |
---|
70 | //For the FIFO implementation |
---|
71 | list<Node> fifo_nodes; |
---|
72 | //For 'highest label' implementation |
---|
73 | int highest_active; |
---|
74 | //int second_highest_active; |
---|
75 | vector< list<Node> > active_nodes; |
---|
76 | |
---|
77 | public: |
---|
78 | |
---|
79 | //Constructing the object using the graph, source, sink and capacity vector |
---|
80 | preflow_push( |
---|
81 | Graph& _G, |
---|
82 | Node _s, |
---|
83 | Node _t, |
---|
84 | typename Graph::EdgeMap<T> & _capacity) |
---|
85 | : G(_G), s(_s), t(_t), |
---|
86 | capacity(_capacity), |
---|
87 | preflow(_G), |
---|
88 | //Counting the number of nodes |
---|
89 | //number_of_nodes(count(G.first<EachNodeIt>())), |
---|
90 | number_of_nodes(G.nodeNum()), |
---|
91 | |
---|
92 | level(_G), |
---|
93 | excess(_G)//, |
---|
94 | // Default constructor: active_nodes() |
---|
95 | { |
---|
96 | //Simplest parameter settings |
---|
97 | node_examination = examine_full;//examine_to_relabel;// |
---|
98 | //Which implementation to be usedexamine_full |
---|
99 | implementation = impl_highest_label;//impl_fifo; |
---|
100 | |
---|
101 | // |
---|
102 | num_of_nodes_on_level.resize(2*number_of_nodes-1); |
---|
103 | num_of_nodes_on_level.clear(); |
---|
104 | |
---|
105 | switch(implementation){ |
---|
106 | case impl_highest_label :{ |
---|
107 | active_nodes.clear(); |
---|
108 | active_nodes.resize(2*number_of_nodes-1); |
---|
109 | |
---|
110 | break; |
---|
111 | } |
---|
112 | default: |
---|
113 | break; |
---|
114 | } |
---|
115 | |
---|
116 | } |
---|
117 | |
---|
118 | //Returns the value of a maximal flow |
---|
119 | T run(); |
---|
120 | |
---|
121 | typename Graph::EdgeMap<T> getmaxflow(){ |
---|
122 | return preflow; |
---|
123 | } |
---|
124 | |
---|
125 | |
---|
126 | private: |
---|
127 | //For testing purposes only |
---|
128 | //Lists the node_properties |
---|
129 | void write_property_vector(typename Graph::NodeMap<T> a, |
---|
130 | //node_property_vector<Graph, T> a, |
---|
131 | char* prop_name="property"){ |
---|
132 | for(NodeIt i=G.template first<NodeIt>(); G.valid(i); G.next(i)) { |
---|
133 | cout<<"Node id.: "<<G.id(i)<<", "<<prop_name<<" value: "<<a[i]<<endl; |
---|
134 | } |
---|
135 | cout<<endl; |
---|
136 | } |
---|
137 | /* |
---|
138 | //Modifies the excess of the node and makes sufficient changes |
---|
139 | void modify_excess(const Node& a ,T v){ |
---|
140 | //T old_value=excess[a]; |
---|
141 | excess[a] += v; |
---|
142 | } |
---|
143 | |
---|
144 | //This private procedure is supposed to modify the preflow on edge j |
---|
145 | //by value v (which can be positive or negative as well) |
---|
146 | //and maintain the excess on the head and tail |
---|
147 | //Here we do not check whether this is possible or not |
---|
148 | void modify_preflow(Edge j, const T& v){ |
---|
149 | |
---|
150 | //Modifiyng the edge |
---|
151 | preflow[j] += v; |
---|
152 | |
---|
153 | |
---|
154 | //Modifiyng the head |
---|
155 | modify_excess(G.head(j),v); |
---|
156 | |
---|
157 | //Modifiyng the tail |
---|
158 | modify_excess(G.tail(j),-v); |
---|
159 | |
---|
160 | } |
---|
161 | */ |
---|
162 | //Gives the active node to work with |
---|
163 | //(depending on the implementation to be used) |
---|
164 | Node get_active_node(){ |
---|
165 | |
---|
166 | |
---|
167 | switch(implementation) { |
---|
168 | case impl_highest_label : { |
---|
169 | |
---|
170 | //First need to find the highest label for which there's an active node |
---|
171 | while( highest_active>=0 && active_nodes[highest_active].empty() ){ |
---|
172 | --highest_active; |
---|
173 | } |
---|
174 | |
---|
175 | if( highest_active>=0) { |
---|
176 | |
---|
177 | |
---|
178 | Node a=active_nodes[highest_active].front(); |
---|
179 | active_nodes[highest_active].pop_front(); |
---|
180 | |
---|
181 | return a; |
---|
182 | } |
---|
183 | else { |
---|
184 | return INVALID; |
---|
185 | } |
---|
186 | |
---|
187 | break; |
---|
188 | |
---|
189 | } |
---|
190 | case impl_fifo : { |
---|
191 | |
---|
192 | if( ! fifo_nodes.empty() ) { |
---|
193 | Node a=fifo_nodes.front(); |
---|
194 | fifo_nodes.pop_front(); |
---|
195 | return a; |
---|
196 | } |
---|
197 | else { |
---|
198 | return INVALID; |
---|
199 | } |
---|
200 | break; |
---|
201 | } |
---|
202 | } |
---|
203 | // |
---|
204 | return INVALID; |
---|
205 | } |
---|
206 | |
---|
207 | //Puts node 'a' among the active nodes |
---|
208 | void make_active(const Node& a){ |
---|
209 | //s and t never become active |
---|
210 | if (a!=s && a!= t){ |
---|
211 | switch(implementation){ |
---|
212 | case impl_highest_label : |
---|
213 | active_nodes[level[a]].push_back(a); |
---|
214 | break; |
---|
215 | case impl_fifo : |
---|
216 | fifo_nodes.push_back(a); |
---|
217 | break; |
---|
218 | } |
---|
219 | |
---|
220 | } |
---|
221 | |
---|
222 | //Update highest_active label |
---|
223 | if (highest_active<level[a]){ |
---|
224 | highest_active=level[a]; |
---|
225 | } |
---|
226 | |
---|
227 | } |
---|
228 | |
---|
229 | //Changes the level of node a and make sufficent changes |
---|
230 | void change_level_to(Node a, int new_value){ |
---|
231 | int seged = level[a]; |
---|
232 | level.set(a,new_value); |
---|
233 | --num_of_nodes_on_level[seged]; |
---|
234 | ++num_of_nodes_on_level[new_value]; |
---|
235 | } |
---|
236 | |
---|
237 | //Collection of things useful (or necessary) to do before running |
---|
238 | |
---|
239 | void preprocess(){ |
---|
240 | |
---|
241 | //--------------------------------------- |
---|
242 | //Initialize parameters |
---|
243 | //--------------------------------------- |
---|
244 | |
---|
245 | //Setting starting preflow, level and excess values to zero |
---|
246 | //This can be important, if the algorithm is run more then once |
---|
247 | for(NodeIt i=G.template first<NodeIt>(); G.valid(i); G.next(i)) { |
---|
248 | level.set(i,0); |
---|
249 | excess.set(i,0); |
---|
250 | for(OutEdgeIt j=G.template first<OutEdgeIt>(i); G.valid(j); G.next(j)) |
---|
251 | preflow.set(j, 0); |
---|
252 | } |
---|
253 | num_of_nodes_on_level[0]=number_of_nodes; |
---|
254 | highest_active=0; |
---|
255 | //--------------------------------------- |
---|
256 | //Initialize parameters |
---|
257 | //--------------------------------------- |
---|
258 | |
---|
259 | |
---|
260 | //------------------------------------ |
---|
261 | //This is the only part that uses BFS |
---|
262 | //------------------------------------ |
---|
263 | |
---|
264 | /*Reverse_bfs from t, to find the starting level.*/ |
---|
265 | //Copyright: Jacint |
---|
266 | change_level_to(t,0); |
---|
267 | |
---|
268 | std::queue<Node> bfs_queue; |
---|
269 | bfs_queue.push(t); |
---|
270 | |
---|
271 | while (!bfs_queue.empty()) { |
---|
272 | |
---|
273 | Node v=bfs_queue.front(); |
---|
274 | bfs_queue.pop(); |
---|
275 | int l=level[v]+1; |
---|
276 | |
---|
277 | InEdgeIt e; |
---|
278 | for(G.first(e,v); G.valid(e); G.next(e)) { |
---|
279 | Node w=G.tail(e); |
---|
280 | if ( level[w] == number_of_nodes && w != s ) { |
---|
281 | bfs_queue.push(w); |
---|
282 | //Node first=level_list[l]; |
---|
283 | //if ( G.valid(first) ) left.set(first,w); |
---|
284 | //right.set(w,first); |
---|
285 | //level_list[l]=w; |
---|
286 | change_level_to(w, l); |
---|
287 | //level.set(w, l); |
---|
288 | } |
---|
289 | } |
---|
290 | } |
---|
291 | change_level_to(s,number_of_nodes); |
---|
292 | //level.set(s,number_of_nodes); |
---|
293 | |
---|
294 | /* |
---|
295 | //Setting starting level values using reverse bfs |
---|
296 | reverse_bfs<Graph> rev_bfs(G,t); |
---|
297 | rev_bfs.run(); |
---|
298 | //write_property_vector(rev_bfs.dist,"rev_bfs"); |
---|
299 | for(NodeIt i=G.template first<NodeIt>(); G.valid(i); G.next(i)) { |
---|
300 | change_level_to(i,rev_bfs.dist(i)); |
---|
301 | //level.put(i,rev_bfs.dist.get(i)); |
---|
302 | } |
---|
303 | */ |
---|
304 | //------------------------------------ |
---|
305 | //This is the only part that uses BFS |
---|
306 | //------------------------------------ |
---|
307 | |
---|
308 | |
---|
309 | //Starting level of s |
---|
310 | change_level_to(s,number_of_nodes); |
---|
311 | //level.put(s,number_of_nodes); |
---|
312 | |
---|
313 | |
---|
314 | //we push as much preflow from s as possible to start with |
---|
315 | for(OutEdgeIt j=G.template first<OutEdgeIt>(s); G.valid(j); G.next(j)){ |
---|
316 | modify_preflow(j,capacity[j] ); |
---|
317 | make_active(G.head(j)); |
---|
318 | int lev=level[G.head(j)]; |
---|
319 | if(highest_active<lev){ |
---|
320 | highest_active=lev; |
---|
321 | } |
---|
322 | } |
---|
323 | //cout<<highest_active<<endl; |
---|
324 | } |
---|
325 | |
---|
326 | |
---|
327 | //If the preflow is less than the capacity on the given edge |
---|
328 | //then it is an edge in the residual graph |
---|
329 | bool is_admissible_forward_edge(Edge j, int& new_level){ |
---|
330 | |
---|
331 | if (capacity[j]>preflow[j]){ |
---|
332 | if(level[G.tail(j)]==level[G.head(j)]+1){ |
---|
333 | return true; |
---|
334 | } |
---|
335 | else{ |
---|
336 | if (level[G.head(j)] < new_level) |
---|
337 | new_level=level[G.head(j)]; |
---|
338 | } |
---|
339 | } |
---|
340 | return false; |
---|
341 | } |
---|
342 | |
---|
343 | //If the preflow is greater than 0 on the given edge |
---|
344 | //then the edge reversd is an edge in the residual graph |
---|
345 | bool is_admissible_backward_edge(Edge j, int& new_level){ |
---|
346 | |
---|
347 | if (0<preflow[j]){ |
---|
348 | if(level[G.tail(j)]==level[G.head(j)]-1){ |
---|
349 | |
---|
350 | return true; |
---|
351 | } |
---|
352 | else{ |
---|
353 | if (level[G.tail(j)] < new_level) |
---|
354 | new_level=level[G.tail(j)]; |
---|
355 | } |
---|
356 | |
---|
357 | } |
---|
358 | return false; |
---|
359 | } |
---|
360 | |
---|
361 | |
---|
362 | }; //class preflow_push |
---|
363 | |
---|
364 | template<typename Graph, typename T> |
---|
365 | T preflow_push<Graph, T>::run() { |
---|
366 | |
---|
367 | //We need a residual graph |
---|
368 | ResGraphType res_graph(G, preflow, capacity); |
---|
369 | |
---|
370 | preprocess(); |
---|
371 | //write_property_vector(level,"level"); |
---|
372 | T e,v; |
---|
373 | Node a; |
---|
374 | while (a=get_active_node(), G.valid(a)){ |
---|
375 | |
---|
376 | bool go_to_next_node=false; |
---|
377 | e = excess[a]; |
---|
378 | while (!go_to_next_node){ |
---|
379 | |
---|
380 | //Initial value for the new level for the active node we are dealing with |
---|
381 | int new_level=2*number_of_nodes; |
---|
382 | |
---|
383 | |
---|
384 | //Out edges from node a |
---|
385 | { |
---|
386 | ResGraphType::OutEdgeIt j=res_graph.first(j,a); |
---|
387 | while (res_graph.valid(j) && e){ |
---|
388 | if (is_admissible_forward_edge(j,new_level)){ |
---|
389 | v=min(e,res_graph.resCap(j)); |
---|
390 | e -= v; |
---|
391 | //New node might become active |
---|
392 | if (excess[res_graph.head(j)]==0){ |
---|
393 | make_active(res_graph.head(j)); |
---|
394 | } |
---|
395 | res_graph.augment(j,v); |
---|
396 | excess[res_graph.tail(j)] -= v; |
---|
397 | excess[res_graph.head(j)] += v; |
---|
398 | } |
---|
399 | res_graph.next(j); |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | /* |
---|
404 | //Out edges from node a |
---|
405 | { |
---|
406 | OutEdgeIt j=G.template first<OutEdgeIt>(a); |
---|
407 | while (G.valid(j) && e){ |
---|
408 | |
---|
409 | if (is_admissible_forward_edge(j,new_level)){ |
---|
410 | v=min(e,capacity[j] - preflow[j]); |
---|
411 | e -= v; |
---|
412 | //New node might become active |
---|
413 | if (excess[G.head(j)]==0){ |
---|
414 | make_active(G.head(j)); |
---|
415 | } |
---|
416 | modify_preflow(j,v); |
---|
417 | } |
---|
418 | G.next(j); |
---|
419 | } |
---|
420 | } |
---|
421 | //In edges to node a |
---|
422 | { |
---|
423 | InEdgeIt j=G.template first<InEdgeIt>(a); |
---|
424 | while (G.valid(j) && e){ |
---|
425 | if (is_admissible_backward_edge(j,new_level)){ |
---|
426 | v=min(e,preflow[j]); |
---|
427 | e -= v; |
---|
428 | //New node might become active |
---|
429 | if (excess[G.tail(j)]==0){ |
---|
430 | make_active(G.tail(j)); |
---|
431 | } |
---|
432 | modify_preflow(j,-v); |
---|
433 | } |
---|
434 | G.next(j); |
---|
435 | } |
---|
436 | } |
---|
437 | */ |
---|
438 | |
---|
439 | //if (G.id(a)==999) |
---|
440 | //cout<<new_level<<" e: "<<e<<endl; |
---|
441 | //cout<<G.id(a)<<" "<<new_level<<endl; |
---|
442 | |
---|
443 | if (0==e){ |
---|
444 | //Saturating push |
---|
445 | go_to_next_node=true; |
---|
446 | } |
---|
447 | else{//If there is still excess in node a |
---|
448 | |
---|
449 | //change_level_to(a,new_level+1); |
---|
450 | |
---|
451 | //Level remains empty |
---|
452 | if (num_of_nodes_on_level[level[a]]==1){ |
---|
453 | change_level_to(a,number_of_nodes); |
---|
454 | //go_to_next_node=True; |
---|
455 | } |
---|
456 | else{ |
---|
457 | change_level_to(a,new_level+1); |
---|
458 | //increase_level(a); |
---|
459 | } |
---|
460 | |
---|
461 | |
---|
462 | |
---|
463 | |
---|
464 | switch(node_examination){ |
---|
465 | case examine_to_relabel: |
---|
466 | make_active(a); |
---|
467 | |
---|
468 | go_to_next_node = true; |
---|
469 | break; |
---|
470 | default: |
---|
471 | break; |
---|
472 | } |
---|
473 | |
---|
474 | |
---|
475 | |
---|
476 | }//if (0==e) |
---|
477 | } |
---|
478 | } |
---|
479 | maxflow_value = excess[t]; |
---|
480 | return maxflow_value; |
---|
481 | }//run |
---|
482 | |
---|
483 | |
---|
484 | }//namespace hugo |
---|
485 | |
---|
486 | #endif //PREFLOW_PUSH_HH |
---|