[207] | 1 | // -*- c++ -*- |
---|
[201] | 2 | #ifndef HUGO_XY_H |
---|
| 3 | #define HUGO_XY_H |
---|
| 4 | |
---|
| 5 | #include <iostream> |
---|
| 6 | |
---|
[207] | 7 | namespace hugo { |
---|
[201] | 8 | |
---|
[249] | 9 | ///\file |
---|
| 10 | ///\brief A simple two dimensional vector and a bounding box implementation |
---|
| 11 | /// |
---|
| 12 | /// The class \ref hugo::xy "xy" implements |
---|
| 13 | ///a two dimensional vector with the usual |
---|
| 14 | /// operations. |
---|
| 15 | /// |
---|
| 16 | /// The class \ref hugo::BoundingBox "BoundingBox" can be used to determine |
---|
| 17 | /// the rectangular bounding box a set of \ref hugo::xy "xy"'s. |
---|
| 18 | |
---|
| 19 | |
---|
[242] | 20 | /** \brief |
---|
| 21 | 2 dimensional vector (plainvector) implementation |
---|
| 22 | |
---|
| 23 | */ |
---|
[207] | 24 | template<typename T> |
---|
| 25 | class xy { |
---|
[201] | 26 | |
---|
[207] | 27 | public: |
---|
[240] | 28 | |
---|
| 29 | T x,y; |
---|
[207] | 30 | |
---|
| 31 | ///Default constructor: both coordinates become 0 |
---|
[240] | 32 | xy() : x(0), y(0) {} |
---|
[201] | 33 | |
---|
[240] | 34 | ///Constructing the instance from coordinates |
---|
| 35 | xy(T a, T b) : x(a), y(a) { } |
---|
[201] | 36 | |
---|
| 37 | |
---|
[207] | 38 | ///Gives back the square of the norm of the vector |
---|
| 39 | T normSquare(){ |
---|
[240] | 40 | return x*x+y*y; |
---|
[207] | 41 | }; |
---|
[201] | 42 | |
---|
[207] | 43 | ///Increments the left hand side by u |
---|
| 44 | xy<T>& operator +=(const xy<T>& u){ |
---|
[240] | 45 | x += u.x; |
---|
| 46 | y += u.y; |
---|
[207] | 47 | return *this; |
---|
| 48 | }; |
---|
[201] | 49 | |
---|
[207] | 50 | ///Decrements the left hand side by u |
---|
| 51 | xy<T>& operator -=(const xy<T>& u){ |
---|
[240] | 52 | x -= u.x; |
---|
| 53 | y -= u.y; |
---|
[207] | 54 | return *this; |
---|
| 55 | }; |
---|
[201] | 56 | |
---|
[207] | 57 | ///Multiplying the left hand side with a scalar |
---|
| 58 | xy<T>& operator *=(const T &u){ |
---|
[240] | 59 | x *= u; |
---|
| 60 | y *= u; |
---|
[207] | 61 | return *this; |
---|
| 62 | }; |
---|
| 63 | |
---|
| 64 | ///Dividing the left hand side by a scalar |
---|
| 65 | xy<T>& operator /=(const T &u){ |
---|
[240] | 66 | x /= u; |
---|
| 67 | y /= u; |
---|
[207] | 68 | return *this; |
---|
| 69 | }; |
---|
[201] | 70 | |
---|
[207] | 71 | ///Returns the scalar product of two vectors |
---|
| 72 | T operator *(const xy<T>& u){ |
---|
[240] | 73 | return x*u.x+y*u.y; |
---|
[207] | 74 | }; |
---|
[201] | 75 | |
---|
[207] | 76 | ///Returns the sum of two vectors |
---|
| 77 | xy<T> operator+(const xy<T> &u) const { |
---|
| 78 | xy<T> b=*this; |
---|
| 79 | return b+=u; |
---|
| 80 | }; |
---|
[201] | 81 | |
---|
[207] | 82 | ///Returns the difference of two vectors |
---|
| 83 | xy<T> operator-(const xy<T> &u) const { |
---|
| 84 | xy<T> b=*this; |
---|
| 85 | return b-=u; |
---|
| 86 | }; |
---|
[201] | 87 | |
---|
[207] | 88 | ///Returns a vector multiplied by a scalar |
---|
| 89 | xy<T> operator*(const T &u) const { |
---|
| 90 | xy<T> b=*this; |
---|
| 91 | return b*=u; |
---|
| 92 | }; |
---|
[201] | 93 | |
---|
[207] | 94 | ///Returns a vector divided by a scalar |
---|
| 95 | xy<T> operator/(const T &u) const { |
---|
| 96 | xy<T> b=*this; |
---|
| 97 | return b/=u; |
---|
| 98 | }; |
---|
[201] | 99 | |
---|
[207] | 100 | ///Testing equality |
---|
| 101 | bool operator==(const xy<T> &u){ |
---|
[240] | 102 | return (x==u.x) && (y==u.y); |
---|
[207] | 103 | }; |
---|
[201] | 104 | |
---|
[207] | 105 | ///Testing inequality |
---|
| 106 | bool operator!=(xy u){ |
---|
[240] | 107 | return (x!=u.x) || (y!=u.y); |
---|
[207] | 108 | }; |
---|
[201] | 109 | |
---|
[207] | 110 | }; |
---|
[201] | 111 | |
---|
[207] | 112 | ///Reading a plainvector from a stream |
---|
| 113 | template<typename T> |
---|
| 114 | inline |
---|
| 115 | std::istream& operator>>(std::istream &is, xy<T> &z) |
---|
| 116 | { |
---|
[240] | 117 | |
---|
| 118 | is >> z.x >> z.y; |
---|
[207] | 119 | return is; |
---|
| 120 | } |
---|
[201] | 121 | |
---|
[207] | 122 | ///Outputting a plainvector to a stream |
---|
| 123 | template<typename T> |
---|
| 124 | inline |
---|
| 125 | std::ostream& operator<<(std::ostream &os, xy<T> z) |
---|
| 126 | { |
---|
[240] | 127 | os << "(" << z.x << ", " << z.y << ")"; |
---|
[207] | 128 | return os; |
---|
| 129 | } |
---|
| 130 | |
---|
[244] | 131 | |
---|
| 132 | /** \brief |
---|
| 133 | Implementation of a bounding box of plainvectors. |
---|
| 134 | |
---|
| 135 | */ |
---|
| 136 | template<typename T> |
---|
| 137 | class BoundingBox { |
---|
| 138 | xy<T> bottom_left, top_right; |
---|
| 139 | bool _empty; |
---|
| 140 | public: |
---|
| 141 | |
---|
| 142 | ///Default constructor: an empty bounding box |
---|
| 143 | BoundingBox() { _empty = true; } |
---|
| 144 | |
---|
| 145 | ///Constructing the instance from one point |
---|
| 146 | BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; } |
---|
| 147 | |
---|
| 148 | ///Is there any point added |
---|
| 149 | bool empty() const { |
---|
| 150 | return _empty; |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) |
---|
| 154 | xy<T> bottomLeft() const { |
---|
| 155 | return bottom_left; |
---|
| 156 | }; |
---|
| 157 | |
---|
| 158 | ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) |
---|
| 159 | xy<T> topRight() const { |
---|
| 160 | return top_right; |
---|
| 161 | }; |
---|
| 162 | |
---|
| 163 | ///Checks whether a point is inside a bounding box |
---|
| 164 | bool inside(const xy<T>& u){ |
---|
| 165 | if (_empty) |
---|
| 166 | return false; |
---|
| 167 | else{ |
---|
| 168 | return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 && |
---|
| 169 | (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 ); |
---|
| 170 | } |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | ///Increments a bounding box with a point |
---|
| 174 | BoundingBox& operator +=(const xy<T>& u){ |
---|
| 175 | if (_empty){ |
---|
| 176 | bottom_left=top_right=u; |
---|
| 177 | _empty = false; |
---|
| 178 | } |
---|
| 179 | else{ |
---|
| 180 | if (bottom_left.x > u.x) bottom_left.x = u.x; |
---|
| 181 | if (bottom_left.y > u.y) bottom_left.y = u.y; |
---|
| 182 | if (top_right.x < u.x) top_right.x = u.x; |
---|
| 183 | if (top_right.y < u.y) top_right.y = u.y; |
---|
| 184 | } |
---|
| 185 | return *this; |
---|
| 186 | }; |
---|
| 187 | |
---|
| 188 | ///Sums a bounding box and a point |
---|
| 189 | BoundingBox operator +(const xy<T>& u){ |
---|
| 190 | BoundingBox b = *this; |
---|
| 191 | return b += u; |
---|
| 192 | }; |
---|
| 193 | |
---|
| 194 | ///Increments a bounding box with an other bounding box |
---|
| 195 | BoundingBox& operator +=(const BoundingBox &u){ |
---|
| 196 | if ( !u.empty() ){ |
---|
| 197 | *this += u.bottomLeft(); |
---|
| 198 | *this += u.topRight(); |
---|
| 199 | } |
---|
| 200 | return *this; |
---|
| 201 | }; |
---|
| 202 | |
---|
| 203 | ///Sums two bounding boxes |
---|
| 204 | BoundingBox operator +(const BoundingBox& u){ |
---|
| 205 | BoundingBox b = *this; |
---|
| 206 | return b += u; |
---|
| 207 | }; |
---|
| 208 | |
---|
| 209 | };//class Boundingbox |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | |
---|
[207] | 214 | } //namespace hugo |
---|
[201] | 215 | |
---|
| 216 | #endif //HUGO_XY_H |
---|