1 | #ifndef BFS_ITERATOR_HH |
---|
2 | #define BFS_ITERATOR_HH |
---|
3 | |
---|
4 | #include <queue> |
---|
5 | #include <stack> |
---|
6 | |
---|
7 | namespace marci { |
---|
8 | |
---|
9 | template <typename Graph> |
---|
10 | struct bfs { |
---|
11 | typedef typename Graph::NodeIt NodeIt; |
---|
12 | typedef typename Graph::EdgeIt EdgeIt; |
---|
13 | typedef typename Graph::EachNodeIt EachNodeIt; |
---|
14 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
15 | Graph& G; |
---|
16 | NodeIt s; |
---|
17 | typename Graph::NodeMap<bool> reached; |
---|
18 | typename Graph::NodeMap<EdgeIt> pred; |
---|
19 | typename Graph::NodeMap<int> dist; |
---|
20 | std::queue<NodeIt> bfs_queue; |
---|
21 | bfs(Graph& _G, NodeIt _s) : G(_G), s(_s), reached(_G), pred(_G), dist(_G) { |
---|
22 | bfs_queue.push(s); |
---|
23 | for(EachNodeIt i=G.template first<EachNodeIt>(); i.valid(); ++i) |
---|
24 | reached.set(i, false); |
---|
25 | reached.set(s, true); |
---|
26 | dist.set(s, 0); |
---|
27 | } |
---|
28 | |
---|
29 | void run() { |
---|
30 | while (!bfs_queue.empty()) { |
---|
31 | NodeIt v=bfs_queue.front(); |
---|
32 | OutEdgeIt e=G.template first<OutEdgeIt>(v); |
---|
33 | bfs_queue.pop(); |
---|
34 | for( ; e.valid(); ++e) { |
---|
35 | NodeIt w=G.bNode(e); |
---|
36 | std::cout << "scan node " << G.id(w) << " from node " << G.id(v) << std::endl; |
---|
37 | if (!reached.get(w)) { |
---|
38 | std::cout << G.id(w) << " is newly reached :-)" << std::endl; |
---|
39 | bfs_queue.push(w); |
---|
40 | dist.set(w, dist.get(v)+1); |
---|
41 | pred.set(w, e); |
---|
42 | reached.set(w, true); |
---|
43 | } else { |
---|
44 | std::cout << G.id(w) << " is already reached" << std::endl; |
---|
45 | } |
---|
46 | } |
---|
47 | } |
---|
48 | } |
---|
49 | }; |
---|
50 | |
---|
51 | template <typename Graph> |
---|
52 | struct bfs_visitor { |
---|
53 | typedef typename Graph::NodeIt NodeIt; |
---|
54 | typedef typename Graph::EdgeIt EdgeIt; |
---|
55 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
56 | Graph& G; |
---|
57 | bfs_visitor(Graph& _G) : G(_G) { } |
---|
58 | void at_previously_reached(OutEdgeIt& e) { |
---|
59 | //NodeIt v=G.aNode(e); |
---|
60 | NodeIt w=G.bNode(e); |
---|
61 | std::cout << G.id(w) << " is already reached" << std::endl; |
---|
62 | } |
---|
63 | void at_newly_reached(OutEdgeIt& e) { |
---|
64 | //NodeIt v=G.aNode(e); |
---|
65 | NodeIt w=G.bNode(e); |
---|
66 | std::cout << G.id(w) << " is newly reached :-)" << std::endl; |
---|
67 | } |
---|
68 | }; |
---|
69 | |
---|
70 | template <typename Graph, typename ReachedMap, typename visitor_type> |
---|
71 | struct bfs_iterator { |
---|
72 | typedef typename Graph::NodeIt NodeIt; |
---|
73 | typedef typename Graph::EdgeIt EdgeIt; |
---|
74 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
75 | Graph& G; |
---|
76 | std::queue<OutEdgeIt>& bfs_queue; |
---|
77 | ReachedMap& reached; |
---|
78 | visitor_type& visitor; |
---|
79 | void process() { |
---|
80 | while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
81 | if (bfs_queue.empty()) return; |
---|
82 | OutEdgeIt e=bfs_queue.front(); |
---|
83 | //NodeIt v=G.aNode(e); |
---|
84 | NodeIt w=G.bNode(e); |
---|
85 | if (!reached.get(w)) { |
---|
86 | visitor.at_newly_reached(e); |
---|
87 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
88 | reached.set(w, true); |
---|
89 | } else { |
---|
90 | visitor.at_previously_reached(e); |
---|
91 | } |
---|
92 | } |
---|
93 | bfs_iterator(Graph& _G, std::queue<OutEdgeIt>& _bfs_queue, ReachedMap& _reached, visitor_type& _visitor) : G(_G), bfs_queue(_bfs_queue), reached(_reached), visitor(_visitor) { |
---|
94 | //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
95 | valid(); |
---|
96 | } |
---|
97 | bfs_iterator<Graph, ReachedMap, visitor_type>& operator++() { |
---|
98 | //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
99 | //if (bfs_queue.empty()) return *this; |
---|
100 | if (!valid()) return *this; |
---|
101 | ++(bfs_queue.front()); |
---|
102 | //while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
103 | valid(); |
---|
104 | return *this; |
---|
105 | } |
---|
106 | //void next() { |
---|
107 | // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
108 | // if (bfs_queue.empty()) return; |
---|
109 | // ++(bfs_queue.front()); |
---|
110 | // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
111 | //} |
---|
112 | bool valid() { |
---|
113 | while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
114 | if (bfs_queue.empty()) return false; else return true; |
---|
115 | } |
---|
116 | //bool finished() { |
---|
117 | // while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
118 | // if (bfs_queue.empty()) return true; else return false; |
---|
119 | //} |
---|
120 | operator EdgeIt () { return bfs_queue.front(); } |
---|
121 | |
---|
122 | }; |
---|
123 | |
---|
124 | template <typename Graph, typename ReachedMap> |
---|
125 | struct bfs_iterator1 { |
---|
126 | typedef typename Graph::NodeIt NodeIt; |
---|
127 | typedef typename Graph::EdgeIt EdgeIt; |
---|
128 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
129 | Graph& G; |
---|
130 | std::queue<OutEdgeIt>& bfs_queue; |
---|
131 | ReachedMap& reached; |
---|
132 | bool _newly_reached; |
---|
133 | bfs_iterator1(Graph& _G, std::queue<OutEdgeIt>& _bfs_queue, ReachedMap& _reached) : G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
134 | valid(); |
---|
135 | if (!bfs_queue.empty() && bfs_queue.front().valid()) { |
---|
136 | OutEdgeIt e=bfs_queue.front(); |
---|
137 | NodeIt w=G.bNode(e); |
---|
138 | if (!reached.get(w)) { |
---|
139 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
140 | reached.set(w, true); |
---|
141 | _newly_reached=true; |
---|
142 | } else { |
---|
143 | _newly_reached=false; |
---|
144 | } |
---|
145 | } |
---|
146 | } |
---|
147 | bfs_iterator1<Graph, ReachedMap>& operator++() { |
---|
148 | if (!valid()) return *this; |
---|
149 | ++(bfs_queue.front()); |
---|
150 | valid(); |
---|
151 | if (!bfs_queue.empty() && bfs_queue.front().valid()) { |
---|
152 | OutEdgeIt e=bfs_queue.front(); |
---|
153 | NodeIt w=G.bNode(e); |
---|
154 | if (!reached.get(w)) { |
---|
155 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
156 | reached.set(w, true); |
---|
157 | _newly_reached=true; |
---|
158 | } else { |
---|
159 | _newly_reached=false; |
---|
160 | } |
---|
161 | } |
---|
162 | return *this; |
---|
163 | } |
---|
164 | bool valid() { |
---|
165 | while ( !bfs_queue.empty() && !bfs_queue.front().valid() ) { bfs_queue.pop(); } |
---|
166 | if (bfs_queue.empty()) return false; else return true; |
---|
167 | } |
---|
168 | operator OutEdgeIt() { return bfs_queue.front(); } |
---|
169 | //ize |
---|
170 | bool newly_reached() { return _newly_reached; } |
---|
171 | |
---|
172 | }; |
---|
173 | |
---|
174 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
175 | struct BfsIterator { |
---|
176 | typedef typename Graph::NodeIt NodeIt; |
---|
177 | Graph& G; |
---|
178 | std::queue<OutEdgeIt>& bfs_queue; |
---|
179 | ReachedMap& reached; |
---|
180 | bool b_node_newly_reached; |
---|
181 | OutEdgeIt actual_edge; |
---|
182 | BfsIterator(Graph& _G, |
---|
183 | std::queue<OutEdgeIt>& _bfs_queue, |
---|
184 | ReachedMap& _reached) : |
---|
185 | G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
186 | actual_edge=bfs_queue.front(); |
---|
187 | if (actual_edge.valid()) { |
---|
188 | NodeIt w=G.bNode(actual_edge); |
---|
189 | if (!reached.get(w)) { |
---|
190 | bfs_queue.push(G.firstOutEdge(w)); |
---|
191 | reached.set(w, true); |
---|
192 | b_node_newly_reached=true; |
---|
193 | } else { |
---|
194 | b_node_newly_reached=false; |
---|
195 | } |
---|
196 | } |
---|
197 | } |
---|
198 | BfsIterator<Graph, OutEdgeIt, ReachedMap>& |
---|
199 | operator++() { |
---|
200 | if (bfs_queue.front().valid()) { |
---|
201 | ++(bfs_queue.front()); |
---|
202 | actual_edge=bfs_queue.front(); |
---|
203 | if (actual_edge.valid()) { |
---|
204 | NodeIt w=G.bNode(actual_edge); |
---|
205 | if (!reached.get(w)) { |
---|
206 | bfs_queue.push(G.firstOutEdge(w)); |
---|
207 | reached.set(w, true); |
---|
208 | b_node_newly_reached=true; |
---|
209 | } else { |
---|
210 | b_node_newly_reached=false; |
---|
211 | } |
---|
212 | } |
---|
213 | } else { |
---|
214 | bfs_queue.pop(); |
---|
215 | actual_edge=bfs_queue.front(); |
---|
216 | if (actual_edge.valid()) { |
---|
217 | NodeIt w=G.bNode(actual_edge); |
---|
218 | if (!reached.get(w)) { |
---|
219 | bfs_queue.push(G.firstOutEdge(w)); |
---|
220 | reached.set(w, true); |
---|
221 | b_node_newly_reached=true; |
---|
222 | } else { |
---|
223 | b_node_newly_reached=false; |
---|
224 | } |
---|
225 | } |
---|
226 | } |
---|
227 | return *this; |
---|
228 | } |
---|
229 | bool finished() { return bfs_queue.empty(); } |
---|
230 | operator OutEdgeIt () { return actual_edge; } |
---|
231 | bool bNodeIsNewlyReached() { return b_node_newly_reached; } |
---|
232 | bool aNodeIsExamined() { return !(actual_edge.valid()); } |
---|
233 | }; |
---|
234 | |
---|
235 | |
---|
236 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
237 | struct DfsIterator { |
---|
238 | typedef typename Graph::NodeIt NodeIt; |
---|
239 | Graph& G; |
---|
240 | std::stack<OutEdgeIt>& bfs_queue; |
---|
241 | ReachedMap& reached; |
---|
242 | bool b_node_newly_reached; |
---|
243 | OutEdgeIt actual_edge; |
---|
244 | DfsIterator(Graph& _G, |
---|
245 | std::stack<OutEdgeIt>& _bfs_queue, |
---|
246 | ReachedMap& _reached) : |
---|
247 | G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
248 | actual_edge=bfs_queue.top(); |
---|
249 | if (actual_edge.valid()) { |
---|
250 | NodeIt w=G.bNode(actual_edge); |
---|
251 | if (!reached.get(w)) { |
---|
252 | bfs_queue.push(G.firstOutEdge(w)); |
---|
253 | reached.set(w, true); |
---|
254 | b_node_newly_reached=true; |
---|
255 | } else { |
---|
256 | ++(bfs_queue.top()); |
---|
257 | b_node_newly_reached=false; |
---|
258 | } |
---|
259 | } else { |
---|
260 | bfs_queue.pop(); |
---|
261 | } |
---|
262 | } |
---|
263 | DfsIterator<Graph, OutEdgeIt, ReachedMap>& |
---|
264 | operator++() { |
---|
265 | actual_edge=bfs_queue.top(); |
---|
266 | if (actual_edge.valid()) { |
---|
267 | NodeIt w=G.bNode(actual_edge); |
---|
268 | if (!reached.get(w)) { |
---|
269 | bfs_queue.push(G.firstOutEdge(w)); |
---|
270 | reached.set(w, true); |
---|
271 | b_node_newly_reached=true; |
---|
272 | } else { |
---|
273 | ++(bfs_queue.top()); |
---|
274 | b_node_newly_reached=false; |
---|
275 | } |
---|
276 | } else { |
---|
277 | bfs_queue.pop(); |
---|
278 | } |
---|
279 | return *this; |
---|
280 | } |
---|
281 | bool finished() { return bfs_queue.empty(); } |
---|
282 | operator OutEdgeIt () { return actual_edge; } |
---|
283 | bool bNodeIsNewlyReached() { return b_node_newly_reached; } |
---|
284 | bool aNodeIsLeaved() { return !(actual_edge.valid()); } |
---|
285 | }; |
---|
286 | |
---|
287 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
288 | struct BfsIterator1 { |
---|
289 | typedef typename Graph::NodeIt NodeIt; |
---|
290 | Graph& G; |
---|
291 | std::queue<OutEdgeIt>& bfs_queue; |
---|
292 | ReachedMap& reached; |
---|
293 | bool b_node_newly_reached; |
---|
294 | OutEdgeIt actual_edge; |
---|
295 | BfsIterator1(Graph& _G, |
---|
296 | std::queue<OutEdgeIt>& _bfs_queue, |
---|
297 | ReachedMap& _reached) : |
---|
298 | G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
299 | actual_edge=bfs_queue.front(); |
---|
300 | if (actual_edge.valid()) { |
---|
301 | NodeIt w=G.bNode(actual_edge); |
---|
302 | if (!reached.get(w)) { |
---|
303 | bfs_queue.push(OutEdgeIt(G, w)); |
---|
304 | reached.set(w, true); |
---|
305 | b_node_newly_reached=true; |
---|
306 | } else { |
---|
307 | b_node_newly_reached=false; |
---|
308 | } |
---|
309 | } |
---|
310 | } |
---|
311 | void next() { |
---|
312 | if (bfs_queue.front().valid()) { |
---|
313 | ++(bfs_queue.front()); |
---|
314 | actual_edge=bfs_queue.front(); |
---|
315 | if (actual_edge.valid()) { |
---|
316 | NodeIt w=G.bNode(actual_edge); |
---|
317 | if (!reached.get(w)) { |
---|
318 | bfs_queue.push(OutEdgeIt(G, w)); |
---|
319 | reached.set(w, true); |
---|
320 | b_node_newly_reached=true; |
---|
321 | } else { |
---|
322 | b_node_newly_reached=false; |
---|
323 | } |
---|
324 | } |
---|
325 | } else { |
---|
326 | bfs_queue.pop(); |
---|
327 | actual_edge=bfs_queue.front(); |
---|
328 | if (actual_edge.valid()) { |
---|
329 | NodeIt w=G.bNode(actual_edge); |
---|
330 | if (!reached.get(w)) { |
---|
331 | bfs_queue.push(OutEdgeIt(G, w)); |
---|
332 | reached.set(w, true); |
---|
333 | b_node_newly_reached=true; |
---|
334 | } else { |
---|
335 | b_node_newly_reached=false; |
---|
336 | } |
---|
337 | } |
---|
338 | } |
---|
339 | //return *this; |
---|
340 | } |
---|
341 | bool finished() { return bfs_queue.empty(); } |
---|
342 | operator OutEdgeIt () { return actual_edge; } |
---|
343 | bool bNodeIsNewlyReached() { return b_node_newly_reached; } |
---|
344 | bool aNodeIsExamined() { return !(actual_edge.valid()); } |
---|
345 | }; |
---|
346 | |
---|
347 | |
---|
348 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
349 | struct DfsIterator1 { |
---|
350 | typedef typename Graph::NodeIt NodeIt; |
---|
351 | Graph& G; |
---|
352 | std::stack<OutEdgeIt>& bfs_queue; |
---|
353 | ReachedMap& reached; |
---|
354 | bool b_node_newly_reached; |
---|
355 | OutEdgeIt actual_edge; |
---|
356 | DfsIterator1(Graph& _G, |
---|
357 | std::stack<OutEdgeIt>& _bfs_queue, |
---|
358 | ReachedMap& _reached) : |
---|
359 | G(_G), bfs_queue(_bfs_queue), reached(_reached) { |
---|
360 | //actual_edge=bfs_queue.top(); |
---|
361 | //if (actual_edge.valid()) { |
---|
362 | // NodeIt w=G.bNode(actual_edge); |
---|
363 | //if (!reached.get(w)) { |
---|
364 | // bfs_queue.push(OutEdgeIt(G, w)); |
---|
365 | // reached.set(w, true); |
---|
366 | // b_node_newly_reached=true; |
---|
367 | //} else { |
---|
368 | // ++(bfs_queue.top()); |
---|
369 | // b_node_newly_reached=false; |
---|
370 | //} |
---|
371 | //} else { |
---|
372 | // bfs_queue.pop(); |
---|
373 | //} |
---|
374 | } |
---|
375 | void next() { |
---|
376 | actual_edge=bfs_queue.top(); |
---|
377 | if (actual_edge.valid()) { |
---|
378 | NodeIt w=G.bNode(actual_edge); |
---|
379 | if (!reached.get(w)) { |
---|
380 | bfs_queue.push(OutEdgeIt(G, w)); |
---|
381 | reached.set(w, true); |
---|
382 | b_node_newly_reached=true; |
---|
383 | } else { |
---|
384 | ++(bfs_queue.top()); |
---|
385 | b_node_newly_reached=false; |
---|
386 | } |
---|
387 | } else { |
---|
388 | bfs_queue.pop(); |
---|
389 | } |
---|
390 | //return *this; |
---|
391 | } |
---|
392 | bool finished() { return bfs_queue.empty(); } |
---|
393 | operator OutEdgeIt () { return actual_edge; } |
---|
394 | bool bNodeIsNewlyReached() { return b_node_newly_reached; } |
---|
395 | bool aNodeIsLeaved() { return !(actual_edge.valid()); } |
---|
396 | }; |
---|
397 | |
---|
398 | template <typename Graph, typename OutEdgeIt, typename ReachedMap> |
---|
399 | class BfsIterator2 { |
---|
400 | typedef typename Graph::NodeIt NodeIt; |
---|
401 | const Graph& G; |
---|
402 | std::queue<OutEdgeIt> bfs_queue; |
---|
403 | ReachedMap reached; |
---|
404 | bool b_node_newly_reached; |
---|
405 | OutEdgeIt actual_edge; |
---|
406 | public: |
---|
407 | BfsIterator2(const Graph& _G) : G(_G), reached(G, false) { } |
---|
408 | void pushAndSetReached(const NodeIt s) { |
---|
409 | reached.set(s, true); |
---|
410 | if (bfs_queue.empty()) { |
---|
411 | bfs_queue.push(G.template first<OutEdgeIt>(s)); |
---|
412 | actual_edge=bfs_queue.front(); |
---|
413 | if (actual_edge.valid()) { |
---|
414 | NodeIt w=G.bNode(actual_edge); |
---|
415 | if (!reached.get(w)) { |
---|
416 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
417 | reached.set(w, true); |
---|
418 | b_node_newly_reached=true; |
---|
419 | } else { |
---|
420 | b_node_newly_reached=false; |
---|
421 | } |
---|
422 | } //else { |
---|
423 | //} |
---|
424 | } else { |
---|
425 | bfs_queue.push(G.template first<OutEdgeIt>(s)); |
---|
426 | } |
---|
427 | } |
---|
428 | BfsIterator2<Graph, OutEdgeIt, ReachedMap>& |
---|
429 | operator++() { |
---|
430 | if (bfs_queue.front().valid()) { |
---|
431 | ++(bfs_queue.front()); |
---|
432 | actual_edge=bfs_queue.front(); |
---|
433 | if (actual_edge.valid()) { |
---|
434 | NodeIt w=G.bNode(actual_edge); |
---|
435 | if (!reached.get(w)) { |
---|
436 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
437 | reached.set(w, true); |
---|
438 | b_node_newly_reached=true; |
---|
439 | } else { |
---|
440 | b_node_newly_reached=false; |
---|
441 | } |
---|
442 | } |
---|
443 | } else { |
---|
444 | bfs_queue.pop(); |
---|
445 | if (!bfs_queue.empty()) { |
---|
446 | actual_edge=bfs_queue.front(); |
---|
447 | } else { |
---|
448 | actual_edge=OutEdgeIt(); |
---|
449 | } |
---|
450 | if (actual_edge.valid()) { |
---|
451 | NodeIt w=G.bNode(actual_edge); |
---|
452 | if (!reached.get(w)) { |
---|
453 | bfs_queue.push(G.template first<OutEdgeIt>(w)); |
---|
454 | reached.set(w, true); |
---|
455 | b_node_newly_reached=true; |
---|
456 | } else { |
---|
457 | b_node_newly_reached=false; |
---|
458 | } |
---|
459 | } |
---|
460 | } |
---|
461 | return *this; |
---|
462 | } |
---|
463 | bool finished() const { return bfs_queue.empty(); } |
---|
464 | operator OutEdgeIt () const { return actual_edge; } |
---|
465 | bool isBNodeNewlyReached() const { return b_node_newly_reached; } |
---|
466 | bool isANodeExamined() const { return !(actual_edge.valid()); } |
---|
467 | const ReachedMap& getReachedMap() const { return reached; } |
---|
468 | const std::queue<OutEdgeIt>& getBfsQueue() const { return bfs_queue; } |
---|
469 | }; |
---|
470 | |
---|
471 | |
---|
472 | } // namespace marci |
---|
473 | |
---|
474 | #endif //BFS_ITERATOR_HH |
---|