[255] | 1 | // -*- C++ -*- |
---|
| 2 | #ifndef HUGO_DIJKSTRA_H |
---|
| 3 | #define HUGO_DIJKSTRA_H |
---|
| 4 | |
---|
[491] | 5 | ///\ingroup galgs |
---|
[255] | 6 | ///\file |
---|
| 7 | ///\brief Dijkstra algorithm. |
---|
| 8 | |
---|
[542] | 9 | #include <hugo/bin_heap.h> |
---|
| 10 | #include <hugo/invalid.h> |
---|
[255] | 11 | |
---|
| 12 | namespace hugo { |
---|
[385] | 13 | |
---|
[430] | 14 | /// \addtogroup galgs |
---|
| 15 | /// @{ |
---|
| 16 | |
---|
[255] | 17 | ///%Dijkstra algorithm class. |
---|
| 18 | |
---|
| 19 | ///This class provides an efficient implementation of %Dijkstra algorithm. |
---|
| 20 | ///The edge lengths are passed to the algorithm using a |
---|
[880] | 21 | ///\ref ReadMap "readable map", |
---|
[255] | 22 | ///so it is easy to change it to any kind of length. |
---|
| 23 | /// |
---|
| 24 | ///The type of the length is determined by the \c ValueType of the length map. |
---|
| 25 | /// |
---|
| 26 | ///It is also possible to change the underlying priority heap. |
---|
| 27 | /// |
---|
[584] | 28 | ///\param GR The graph type the algorithm runs on. |
---|
| 29 | ///\param LM This read-only |
---|
[385] | 30 | ///EdgeMap |
---|
| 31 | ///determines the |
---|
| 32 | ///lengths of the edges. It is read once for each edge, so the map |
---|
| 33 | ///may involve in relatively time consuming process to compute the edge |
---|
| 34 | ///length if it is necessary. The default map type is |
---|
[880] | 35 | ///\ref Graph::EdgeMap "Graph::EdgeMap<int>" |
---|
[385] | 36 | ///\param Heap The heap type used by the %Dijkstra |
---|
| 37 | ///algorithm. The default |
---|
| 38 | ///is using \ref BinHeap "binary heap". |
---|
[456] | 39 | /// |
---|
[689] | 40 | ///\author Jacint Szabo and Alpar Juttner |
---|
[693] | 41 | ///\todo We need a typedef-names should be standardized. (-: |
---|
[584] | 42 | |
---|
[255] | 43 | #ifdef DOXYGEN |
---|
[584] | 44 | template <typename GR, |
---|
| 45 | typename LM, |
---|
[255] | 46 | typename Heap> |
---|
| 47 | #else |
---|
[584] | 48 | template <typename GR, |
---|
| 49 | typename LM=typename GR::template EdgeMap<int>, |
---|
[532] | 50 | template <class,class,class,class> class Heap = BinHeap > |
---|
[255] | 51 | #endif |
---|
| 52 | class Dijkstra{ |
---|
| 53 | public: |
---|
[584] | 54 | ///The type of the underlying graph. |
---|
| 55 | typedef GR Graph; |
---|
[255] | 56 | typedef typename Graph::Node Node; |
---|
| 57 | typedef typename Graph::NodeIt NodeIt; |
---|
| 58 | typedef typename Graph::Edge Edge; |
---|
| 59 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
| 60 | |
---|
[584] | 61 | ///The type of the length of the edges. |
---|
| 62 | typedef typename LM::ValueType ValueType; |
---|
[693] | 63 | ///The type of the map that stores the edge lengths. |
---|
[584] | 64 | typedef LM LengthMap; |
---|
[693] | 65 | ///\brief The type of the map that stores the last |
---|
[584] | 66 | ///edges of the shortest paths. |
---|
[433] | 67 | typedef typename Graph::template NodeMap<Edge> PredMap; |
---|
[693] | 68 | ///\brief The type of the map that stores the last but one |
---|
[584] | 69 | ///nodes of the shortest paths. |
---|
[433] | 70 | typedef typename Graph::template NodeMap<Node> PredNodeMap; |
---|
[693] | 71 | ///The type of the map that stores the dists of the nodes. |
---|
[433] | 72 | typedef typename Graph::template NodeMap<ValueType> DistMap; |
---|
[255] | 73 | |
---|
| 74 | private: |
---|
[688] | 75 | const Graph *G; |
---|
| 76 | const LM *length; |
---|
| 77 | // bool local_length; |
---|
| 78 | PredMap *predecessor; |
---|
| 79 | bool local_predecessor; |
---|
| 80 | PredNodeMap *pred_node; |
---|
| 81 | bool local_pred_node; |
---|
| 82 | DistMap *distance; |
---|
| 83 | bool local_distance; |
---|
| 84 | |
---|
| 85 | ///Initialize maps |
---|
| 86 | |
---|
[694] | 87 | ///\todo Error if \c G or are \c NULL. What about \c length? |
---|
[688] | 88 | ///\todo Better memory allocation (instead of new). |
---|
| 89 | void init_maps() |
---|
| 90 | { |
---|
| 91 | // if(!length) { |
---|
| 92 | // local_length = true; |
---|
| 93 | // length = new LM(G); |
---|
| 94 | // } |
---|
| 95 | if(!predecessor) { |
---|
| 96 | local_predecessor = true; |
---|
| 97 | predecessor = new PredMap(*G); |
---|
| 98 | } |
---|
| 99 | if(!pred_node) { |
---|
| 100 | local_pred_node = true; |
---|
| 101 | pred_node = new PredNodeMap(*G); |
---|
| 102 | } |
---|
| 103 | if(!distance) { |
---|
| 104 | local_distance = true; |
---|
| 105 | distance = new DistMap(*G); |
---|
| 106 | } |
---|
| 107 | } |
---|
[255] | 108 | |
---|
| 109 | public : |
---|
| 110 | |
---|
[584] | 111 | Dijkstra(const Graph& _G, const LM& _length) : |
---|
[688] | 112 | G(&_G), length(&_length), |
---|
| 113 | predecessor(NULL), pred_node(NULL), distance(NULL), |
---|
| 114 | local_predecessor(false), local_pred_node(false), local_distance(false) |
---|
| 115 | { } |
---|
| 116 | |
---|
| 117 | ~Dijkstra() |
---|
| 118 | { |
---|
| 119 | // if(local_length) delete length; |
---|
| 120 | if(local_predecessor) delete predecessor; |
---|
| 121 | if(local_pred_node) delete pred_node; |
---|
| 122 | if(local_distance) delete distance; |
---|
| 123 | } |
---|
| 124 | |
---|
| 125 | ///Sets the graph the algorithm will run on. |
---|
| 126 | |
---|
| 127 | ///Sets the graph the algorithm will run on. |
---|
| 128 | ///\return <tt> (*this) </tt> |
---|
| 129 | Dijkstra &setGraph(const Graph &_G) |
---|
| 130 | { |
---|
| 131 | G = &_G; |
---|
| 132 | return *this; |
---|
| 133 | } |
---|
| 134 | ///Sets the length map. |
---|
| 135 | |
---|
| 136 | ///Sets the length map. |
---|
| 137 | ///\return <tt> (*this) </tt> |
---|
| 138 | Dijkstra &setLengthMap(const LM &m) |
---|
| 139 | { |
---|
| 140 | // if(local_length) { |
---|
| 141 | // delete length; |
---|
| 142 | // local_length=false; |
---|
| 143 | // } |
---|
| 144 | length = &m; |
---|
| 145 | return *this; |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | ///Sets the map storing the predecessor edges. |
---|
| 149 | |
---|
| 150 | ///Sets the map storing the predecessor edges. |
---|
| 151 | ///If you don't use this function before calling \ref run(), |
---|
| 152 | ///it will allocate one. The destuctor deallocates this |
---|
| 153 | ///automatically allocated map, of course. |
---|
| 154 | ///\return <tt> (*this) </tt> |
---|
| 155 | Dijkstra &setPredMap(PredMap &m) |
---|
| 156 | { |
---|
| 157 | if(local_predecessor) { |
---|
| 158 | delete predecessor; |
---|
| 159 | local_predecessor=false; |
---|
| 160 | } |
---|
| 161 | predecessor = &m; |
---|
| 162 | return *this; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | ///Sets the map storing the predecessor nodes. |
---|
| 166 | |
---|
| 167 | ///Sets the map storing the predecessor nodes. |
---|
| 168 | ///If you don't use this function before calling \ref run(), |
---|
| 169 | ///it will allocate one. The destuctor deallocates this |
---|
| 170 | ///automatically allocated map, of course. |
---|
| 171 | ///\return <tt> (*this) </tt> |
---|
| 172 | Dijkstra &setPredNodeMap(PredNodeMap &m) |
---|
| 173 | { |
---|
| 174 | if(local_pred_node) { |
---|
| 175 | delete pred_node; |
---|
| 176 | local_pred_node=false; |
---|
| 177 | } |
---|
| 178 | pred_node = &m; |
---|
| 179 | return *this; |
---|
| 180 | } |
---|
| 181 | |
---|
| 182 | ///Sets the map storing the distances calculated by the algorithm. |
---|
| 183 | |
---|
| 184 | ///Sets the map storing the distances calculated by the algorithm. |
---|
| 185 | ///If you don't use this function before calling \ref run(), |
---|
| 186 | ///it will allocate one. The destuctor deallocates this |
---|
| 187 | ///automatically allocated map, of course. |
---|
| 188 | ///\return <tt> (*this) </tt> |
---|
| 189 | Dijkstra &setDistMap(DistMap &m) |
---|
| 190 | { |
---|
| 191 | if(local_distance) { |
---|
| 192 | delete distance; |
---|
| 193 | local_distance=false; |
---|
| 194 | } |
---|
| 195 | distance = &m; |
---|
| 196 | return *this; |
---|
| 197 | } |
---|
[255] | 198 | |
---|
[694] | 199 | ///Runs %Dijkstra algorithm from node \c s. |
---|
| 200 | |
---|
| 201 | ///This method runs the %Dijkstra algorithm from a root node \c s |
---|
| 202 | ///in order to |
---|
| 203 | ///compute the |
---|
| 204 | ///shortest path to each node. The algorithm computes |
---|
| 205 | ///- The shortest path tree. |
---|
| 206 | ///- The distance of each node from the root. |
---|
| 207 | |
---|
| 208 | void run(Node s) { |
---|
| 209 | |
---|
| 210 | init_maps(); |
---|
| 211 | |
---|
| 212 | for ( NodeIt u(*G) ; G->valid(u) ; G->next(u) ) { |
---|
| 213 | predecessor->set(u,INVALID); |
---|
| 214 | pred_node->set(u,INVALID); |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | typename GR::template NodeMap<int> heap_map(*G,-1); |
---|
| 218 | |
---|
| 219 | typedef Heap<Node, ValueType, typename GR::template NodeMap<int>, |
---|
| 220 | std::less<ValueType> > |
---|
| 221 | HeapType; |
---|
| 222 | |
---|
| 223 | HeapType heap(heap_map); |
---|
| 224 | |
---|
| 225 | heap.push(s,0); |
---|
| 226 | |
---|
| 227 | while ( !heap.empty() ) { |
---|
| 228 | |
---|
| 229 | Node v=heap.top(); |
---|
| 230 | ValueType oldvalue=heap[v]; |
---|
| 231 | heap.pop(); |
---|
| 232 | distance->set(v, oldvalue); |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | for(OutEdgeIt e(*G,v); G->valid(e); G->next(e)) { |
---|
| 236 | Node w=G->bNode(e); |
---|
| 237 | |
---|
| 238 | switch(heap.state(w)) { |
---|
| 239 | case HeapType::PRE_HEAP: |
---|
| 240 | heap.push(w,oldvalue+(*length)[e]); |
---|
| 241 | predecessor->set(w,e); |
---|
| 242 | pred_node->set(w,v); |
---|
| 243 | break; |
---|
| 244 | case HeapType::IN_HEAP: |
---|
| 245 | if ( oldvalue+(*length)[e] < heap[w] ) { |
---|
| 246 | heap.decrease(w, oldvalue+(*length)[e]); |
---|
| 247 | predecessor->set(w,e); |
---|
| 248 | pred_node->set(w,v); |
---|
| 249 | } |
---|
| 250 | break; |
---|
| 251 | case HeapType::POST_HEAP: |
---|
| 252 | break; |
---|
| 253 | } |
---|
| 254 | } |
---|
| 255 | } |
---|
| 256 | } |
---|
[255] | 257 | |
---|
[385] | 258 | ///The distance of a node from the root. |
---|
[255] | 259 | |
---|
[385] | 260 | ///Returns the distance of a node from the root. |
---|
[255] | 261 | ///\pre \ref run() must be called before using this function. |
---|
[385] | 262 | ///\warning If node \c v in unreachable from the root the return value |
---|
[255] | 263 | ///of this funcion is undefined. |
---|
[688] | 264 | ValueType dist(Node v) const { return (*distance)[v]; } |
---|
[373] | 265 | |
---|
[584] | 266 | ///Returns the 'previous edge' of the shortest path tree. |
---|
[255] | 267 | |
---|
[584] | 268 | ///For a node \c v it returns the 'previous edge' of the shortest path tree, |
---|
[385] | 269 | ///i.e. it returns the last edge from a shortest path from the root to \c |
---|
[688] | 270 | ///v. It is \ref INVALID |
---|
| 271 | ///if \c v is unreachable from the root or if \c v=s. The |
---|
[385] | 272 | ///shortest path tree used here is equal to the shortest path tree used in |
---|
| 273 | ///\ref predNode(Node v). \pre \ref run() must be called before using |
---|
| 274 | ///this function. |
---|
[688] | 275 | Edge pred(Node v) const { return (*predecessor)[v]; } |
---|
[373] | 276 | |
---|
[584] | 277 | ///Returns the 'previous node' of the shortest path tree. |
---|
[255] | 278 | |
---|
[584] | 279 | ///For a node \c v it returns the 'previous node' of the shortest path tree, |
---|
[385] | 280 | ///i.e. it returns the last but one node from a shortest path from the |
---|
| 281 | ///root to \c /v. It is INVALID if \c v is unreachable from the root or if |
---|
| 282 | ///\c v=s. The shortest path tree used here is equal to the shortest path |
---|
| 283 | ///tree used in \ref pred(Node v). \pre \ref run() must be called before |
---|
| 284 | ///using this function. |
---|
[688] | 285 | Node predNode(Node v) const { return (*pred_node)[v]; } |
---|
[255] | 286 | |
---|
| 287 | ///Returns a reference to the NodeMap of distances. |
---|
| 288 | |
---|
[385] | 289 | ///Returns a reference to the NodeMap of distances. \pre \ref run() must |
---|
| 290 | ///be called before using this function. |
---|
[688] | 291 | const DistMap &distMap() const { return *distance;} |
---|
[385] | 292 | |
---|
[255] | 293 | ///Returns a reference to the shortest path tree map. |
---|
| 294 | |
---|
| 295 | ///Returns a reference to the NodeMap of the edges of the |
---|
| 296 | ///shortest path tree. |
---|
| 297 | ///\pre \ref run() must be called before using this function. |
---|
[688] | 298 | const PredMap &predMap() const { return *predecessor;} |
---|
[385] | 299 | |
---|
| 300 | ///Returns a reference to the map of nodes of shortest paths. |
---|
[255] | 301 | |
---|
| 302 | ///Returns a reference to the NodeMap of the last but one nodes of the |
---|
[385] | 303 | ///shortest path tree. |
---|
[255] | 304 | ///\pre \ref run() must be called before using this function. |
---|
[688] | 305 | const PredNodeMap &predNodeMap() const { return *pred_node;} |
---|
[255] | 306 | |
---|
[385] | 307 | ///Checks if a node is reachable from the root. |
---|
[255] | 308 | |
---|
[385] | 309 | ///Returns \c true if \c v is reachable from the root. |
---|
| 310 | ///\warning the root node is reported to be unreached! |
---|
[255] | 311 | ///\todo Is this what we want? |
---|
| 312 | ///\pre \ref run() must be called before using this function. |
---|
[385] | 313 | /// |
---|
[688] | 314 | bool reached(Node v) { return G->valid((*predecessor)[v]); } |
---|
[255] | 315 | |
---|
| 316 | }; |
---|
| 317 | |
---|
| 318 | |
---|
| 319 | // ********************************************************************** |
---|
| 320 | // IMPLEMENTATIONS |
---|
| 321 | // ********************************************************************** |
---|
| 322 | |
---|
[430] | 323 | /// @} |
---|
[255] | 324 | |
---|
| 325 | } //END OF NAMESPACE HUGO |
---|
| 326 | |
---|
| 327 | #endif |
---|
| 328 | |
---|
| 329 | |
---|