1 | // -*- mode:C++ -*- |
---|
2 | |
---|
3 | #ifndef LEMON_LIST_GRAPH_H |
---|
4 | #define LEMON_LIST_GRAPH_H |
---|
5 | |
---|
6 | ///\ingroup graphs |
---|
7 | ///\file |
---|
8 | ///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes. |
---|
9 | |
---|
10 | #include <vector> |
---|
11 | #include <climits> |
---|
12 | |
---|
13 | #include "invalid.h" |
---|
14 | |
---|
15 | #include "array_map_factory.h" |
---|
16 | #include "map_registry.h" |
---|
17 | |
---|
18 | #include "map_defines.h" |
---|
19 | |
---|
20 | namespace lemon { |
---|
21 | |
---|
22 | /// \addtogroup graphs |
---|
23 | /// @{ |
---|
24 | |
---|
25 | ///A list graph class. |
---|
26 | |
---|
27 | ///This is a simple and fast erasable graph implementation. |
---|
28 | /// |
---|
29 | ///It conforms to the graph interface documented under |
---|
30 | ///the description of \ref Graph. |
---|
31 | ///\sa \ref Graph. |
---|
32 | class ListGraph { |
---|
33 | |
---|
34 | //Nodes are double linked. |
---|
35 | //The free nodes are only single linked using the "next" field. |
---|
36 | struct NodeT |
---|
37 | { |
---|
38 | int first_in,first_out; |
---|
39 | int prev, next; |
---|
40 | // NodeT() {} |
---|
41 | }; |
---|
42 | //Edges are double linked. |
---|
43 | //The free edges are only single linked using the "next_in" field. |
---|
44 | struct EdgeT |
---|
45 | { |
---|
46 | int head, tail; |
---|
47 | int prev_in, prev_out; |
---|
48 | int next_in, next_out; |
---|
49 | //FIXME: is this necessary? |
---|
50 | // EdgeT() : next_in(-1), next_out(-1) prev_in(-1), prev_out(-1) {} |
---|
51 | }; |
---|
52 | |
---|
53 | std::vector<NodeT> nodes; |
---|
54 | //The first node |
---|
55 | int first_node; |
---|
56 | //The first free node |
---|
57 | int first_free_node; |
---|
58 | std::vector<EdgeT> edges; |
---|
59 | //The first free edge |
---|
60 | int first_free_edge; |
---|
61 | |
---|
62 | protected: |
---|
63 | |
---|
64 | public: |
---|
65 | |
---|
66 | class Node; |
---|
67 | class Edge; |
---|
68 | |
---|
69 | typedef ListGraph Graph; |
---|
70 | |
---|
71 | public: |
---|
72 | |
---|
73 | class NodeIt; |
---|
74 | class EdgeIt; |
---|
75 | class OutEdgeIt; |
---|
76 | class InEdgeIt; |
---|
77 | |
---|
78 | CREATE_MAP_REGISTRIES; |
---|
79 | CREATE_MAPS(ArrayMapFactory); |
---|
80 | public: |
---|
81 | |
---|
82 | ListGraph() : nodes(), first_node(-1), |
---|
83 | first_free_node(-1), edges(), first_free_edge(-1) {} |
---|
84 | ListGraph(const ListGraph &_g) : nodes(_g.nodes), first_node(_g.first_node), |
---|
85 | first_free_node(_g.first_free_node), |
---|
86 | edges(_g.edges), |
---|
87 | first_free_edge(_g.first_free_edge) {} |
---|
88 | |
---|
89 | |
---|
90 | int nodeNum() const { return nodes.size(); } //FIXME: What is this? |
---|
91 | int edgeNum() const { return edges.size(); } //FIXME: What is this? |
---|
92 | |
---|
93 | ///Set the expected number of edges |
---|
94 | |
---|
95 | ///With this function, it is possible to set the expected number of edges. |
---|
96 | ///The use of this fasten the building of the graph and makes |
---|
97 | ///it possible to avoid the superfluous memory allocation. |
---|
98 | void reserveEdge(int n) { edges.reserve(n); }; |
---|
99 | |
---|
100 | ///\bug This function does something different than |
---|
101 | ///its name would suggests... |
---|
102 | int maxNodeId() const { return nodes.size(); } //FIXME: What is this? |
---|
103 | ///\bug This function does something different than |
---|
104 | ///its name would suggests... |
---|
105 | int maxEdgeId() const { return edges.size(); } //FIXME: What is this? |
---|
106 | |
---|
107 | Node tail(Edge e) const { return edges[e.n].tail; } |
---|
108 | Node head(Edge e) const { return edges[e.n].head; } |
---|
109 | |
---|
110 | Node aNode(OutEdgeIt e) const { return edges[e.n].tail; } |
---|
111 | Node aNode(InEdgeIt e) const { return edges[e.n].head; } |
---|
112 | |
---|
113 | Node bNode(OutEdgeIt e) const { return edges[e.n].head; } |
---|
114 | Node bNode(InEdgeIt e) const { return edges[e.n].tail; } |
---|
115 | |
---|
116 | NodeIt& first(NodeIt& v) const { |
---|
117 | v=NodeIt(*this); return v; } |
---|
118 | EdgeIt& first(EdgeIt& e) const { |
---|
119 | e=EdgeIt(*this); return e; } |
---|
120 | OutEdgeIt& first(OutEdgeIt& e, const Node v) const { |
---|
121 | e=OutEdgeIt(*this,v); return e; } |
---|
122 | InEdgeIt& first(InEdgeIt& e, const Node v) const { |
---|
123 | e=InEdgeIt(*this,v); return e; } |
---|
124 | |
---|
125 | // template< typename It > |
---|
126 | // It first() const { It e; first(e); return e; } |
---|
127 | |
---|
128 | // template< typename It > |
---|
129 | // It first(Node v) const { It e; first(e,v); return e; } |
---|
130 | |
---|
131 | bool valid(Edge e) const { return e.n!=-1; } |
---|
132 | bool valid(Node n) const { return n.n!=-1; } |
---|
133 | |
---|
134 | void setInvalid(Edge &e) { e.n=-1; } |
---|
135 | void setInvalid(Node &n) { n.n=-1; } |
---|
136 | |
---|
137 | template <typename It> It getNext(It it) const |
---|
138 | { It tmp(it); return next(tmp); } |
---|
139 | |
---|
140 | NodeIt& next(NodeIt& it) const { |
---|
141 | it.n=nodes[it.n].next; |
---|
142 | return it; |
---|
143 | } |
---|
144 | OutEdgeIt& next(OutEdgeIt& it) const |
---|
145 | { it.n=edges[it.n].next_out; return it; } |
---|
146 | InEdgeIt& next(InEdgeIt& it) const |
---|
147 | { it.n=edges[it.n].next_in; return it; } |
---|
148 | EdgeIt& next(EdgeIt& it) const { |
---|
149 | if(edges[it.n].next_in!=-1) { |
---|
150 | it.n=edges[it.n].next_in; |
---|
151 | } |
---|
152 | else { |
---|
153 | int n; |
---|
154 | for(n=nodes[edges[it.n].head].next; |
---|
155 | n!=-1 && nodes[n].first_in == -1; |
---|
156 | n = nodes[n].next) ; |
---|
157 | it.n = (n==-1)?-1:nodes[n].first_in; |
---|
158 | } |
---|
159 | return it; |
---|
160 | } |
---|
161 | |
---|
162 | int id(Node v) const { return v.n; } |
---|
163 | int id(Edge e) const { return e.n; } |
---|
164 | |
---|
165 | /// Adds a new node to the graph. |
---|
166 | |
---|
167 | /// \todo It adds the nodes in a reversed order. |
---|
168 | /// (i.e. the lastly added node becomes the first.) |
---|
169 | Node addNode() { |
---|
170 | int n; |
---|
171 | |
---|
172 | if(first_free_node==-1) |
---|
173 | { |
---|
174 | n = nodes.size(); |
---|
175 | nodes.push_back(NodeT()); |
---|
176 | } |
---|
177 | else { |
---|
178 | n = first_free_node; |
---|
179 | first_free_node = nodes[n].next; |
---|
180 | } |
---|
181 | |
---|
182 | nodes[n].next = first_node; |
---|
183 | if(first_node != -1) nodes[first_node].prev = n; |
---|
184 | first_node = n; |
---|
185 | nodes[n].prev = -1; |
---|
186 | |
---|
187 | nodes[n].first_in = nodes[n].first_out = -1; |
---|
188 | |
---|
189 | Node nn; nn.n=n; |
---|
190 | |
---|
191 | //Update dynamic maps |
---|
192 | node_maps.add(nn); |
---|
193 | |
---|
194 | return nn; |
---|
195 | } |
---|
196 | |
---|
197 | Edge addEdge(Node u, Node v) { |
---|
198 | int n; |
---|
199 | |
---|
200 | if(first_free_edge==-1) |
---|
201 | { |
---|
202 | n = edges.size(); |
---|
203 | edges.push_back(EdgeT()); |
---|
204 | } |
---|
205 | else { |
---|
206 | n = first_free_edge; |
---|
207 | first_free_edge = edges[n].next_in; |
---|
208 | } |
---|
209 | |
---|
210 | edges[n].tail = u.n; edges[n].head = v.n; |
---|
211 | |
---|
212 | edges[n].next_out = nodes[u.n].first_out; |
---|
213 | if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n; |
---|
214 | edges[n].next_in = nodes[v.n].first_in; |
---|
215 | if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n; |
---|
216 | edges[n].prev_in = edges[n].prev_out = -1; |
---|
217 | |
---|
218 | nodes[u.n].first_out = nodes[v.n].first_in = n; |
---|
219 | |
---|
220 | Edge e; e.n=n; |
---|
221 | |
---|
222 | //Update dynamic maps |
---|
223 | edge_maps.add(e); |
---|
224 | |
---|
225 | return e; |
---|
226 | } |
---|
227 | |
---|
228 | private: |
---|
229 | void eraseEdge(int n) { |
---|
230 | |
---|
231 | if(edges[n].next_in!=-1) |
---|
232 | edges[edges[n].next_in].prev_in = edges[n].prev_in; |
---|
233 | if(edges[n].prev_in!=-1) |
---|
234 | edges[edges[n].prev_in].next_in = edges[n].next_in; |
---|
235 | else nodes[edges[n].head].first_in = edges[n].next_in; |
---|
236 | |
---|
237 | if(edges[n].next_out!=-1) |
---|
238 | edges[edges[n].next_out].prev_out = edges[n].prev_out; |
---|
239 | if(edges[n].prev_out!=-1) |
---|
240 | edges[edges[n].prev_out].next_out = edges[n].next_out; |
---|
241 | else nodes[edges[n].tail].first_out = edges[n].next_out; |
---|
242 | |
---|
243 | edges[n].next_in = first_free_edge; |
---|
244 | first_free_edge = n; |
---|
245 | |
---|
246 | //Update dynamic maps |
---|
247 | Edge e; e.n=n; |
---|
248 | } |
---|
249 | |
---|
250 | public: |
---|
251 | |
---|
252 | void erase(Node nn) { |
---|
253 | int n=nn.n; |
---|
254 | |
---|
255 | int m; |
---|
256 | while((m=nodes[n].first_in)!=-1) eraseEdge(m); |
---|
257 | while((m=nodes[n].first_out)!=-1) eraseEdge(m); |
---|
258 | |
---|
259 | if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev; |
---|
260 | if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next; |
---|
261 | else first_node = nodes[n].next; |
---|
262 | |
---|
263 | nodes[n].next = first_free_node; |
---|
264 | first_free_node = n; |
---|
265 | |
---|
266 | //Update dynamic maps |
---|
267 | node_maps.erase(nn); |
---|
268 | } |
---|
269 | |
---|
270 | void erase(Edge e) { |
---|
271 | edge_maps.erase(e); |
---|
272 | eraseEdge(e.n); |
---|
273 | } |
---|
274 | |
---|
275 | ///\bug Dynamic maps must be updated! |
---|
276 | /// |
---|
277 | void clear() { |
---|
278 | nodes.clear();edges.clear(); |
---|
279 | first_node=first_free_node=first_free_edge=-1; |
---|
280 | } |
---|
281 | |
---|
282 | class Node { |
---|
283 | friend class ListGraph; |
---|
284 | template <typename T> friend class NodeMap; |
---|
285 | |
---|
286 | friend class Edge; |
---|
287 | friend class OutEdgeIt; |
---|
288 | friend class InEdgeIt; |
---|
289 | friend class SymEdge; |
---|
290 | |
---|
291 | protected: |
---|
292 | int n; |
---|
293 | friend int ListGraph::id(Node v) const; |
---|
294 | Node(int nn) {n=nn;} |
---|
295 | public: |
---|
296 | Node() {} |
---|
297 | Node (Invalid) { n=-1; } |
---|
298 | bool operator==(const Node i) const {return n==i.n;} |
---|
299 | bool operator!=(const Node i) const {return n!=i.n;} |
---|
300 | bool operator<(const Node i) const {return n<i.n;} |
---|
301 | }; |
---|
302 | |
---|
303 | class NodeIt : public Node { |
---|
304 | friend class ListGraph; |
---|
305 | public: |
---|
306 | NodeIt() : Node() { } |
---|
307 | NodeIt(Invalid i) : Node(i) { } |
---|
308 | NodeIt(const ListGraph& G) : Node(G.first_node) { } |
---|
309 | ///\todo Undocumented conversion Node -\> NodeIt. |
---|
310 | NodeIt(const ListGraph& G, const Node &n) : Node(n) { } |
---|
311 | }; |
---|
312 | |
---|
313 | class Edge { |
---|
314 | friend class ListGraph; |
---|
315 | template <typename T> friend class EdgeMap; |
---|
316 | |
---|
317 | //template <typename T> friend class SymListGraph::SymEdgeMap; |
---|
318 | //friend Edge SymListGraph::opposite(Edge) const; |
---|
319 | |
---|
320 | friend class Node; |
---|
321 | friend class NodeIt; |
---|
322 | protected: |
---|
323 | int n; |
---|
324 | friend int ListGraph::id(Edge e) const; |
---|
325 | |
---|
326 | Edge(int nn) {n=nn;} |
---|
327 | public: |
---|
328 | Edge() { } |
---|
329 | Edge (Invalid) { n=-1; } |
---|
330 | bool operator==(const Edge i) const {return n==i.n;} |
---|
331 | bool operator!=(const Edge i) const {return n!=i.n;} |
---|
332 | bool operator<(const Edge i) const {return n<i.n;} |
---|
333 | ///\bug This is a workaround until somebody tells me how to |
---|
334 | ///make class \c SymListGraph::SymEdgeMap friend of Edge |
---|
335 | int &idref() {return n;} |
---|
336 | const int &idref() const {return n;} |
---|
337 | }; |
---|
338 | |
---|
339 | class EdgeIt : public Edge { |
---|
340 | friend class ListGraph; |
---|
341 | public: |
---|
342 | EdgeIt(const ListGraph& G) : Edge() { |
---|
343 | int m; |
---|
344 | for(m=G.first_node; |
---|
345 | m!=-1 && G.nodes[m].first_in == -1; m = G.nodes[m].next); |
---|
346 | n = (m==-1)?-1:G.nodes[m].first_in; |
---|
347 | } |
---|
348 | EdgeIt (Invalid i) : Edge(i) { } |
---|
349 | EdgeIt() : Edge() { } |
---|
350 | ///\bug This is a workaround until somebody tells me how to |
---|
351 | ///make class \c SymListGraph::SymEdgeMap friend of Edge |
---|
352 | int &idref() {return n;} |
---|
353 | }; |
---|
354 | |
---|
355 | class OutEdgeIt : public Edge { |
---|
356 | friend class ListGraph; |
---|
357 | public: |
---|
358 | OutEdgeIt() : Edge() { } |
---|
359 | OutEdgeIt (Invalid i) : Edge(i) { } |
---|
360 | |
---|
361 | OutEdgeIt(const ListGraph& G,const Node v) |
---|
362 | : Edge(G.nodes[v.n].first_out) {} |
---|
363 | }; |
---|
364 | |
---|
365 | class InEdgeIt : public Edge { |
---|
366 | friend class ListGraph; |
---|
367 | public: |
---|
368 | InEdgeIt() : Edge() { } |
---|
369 | InEdgeIt (Invalid i) : Edge(i) { } |
---|
370 | InEdgeIt(const ListGraph& G,Node v) :Edge(G.nodes[v.n].first_in) {} |
---|
371 | }; |
---|
372 | |
---|
373 | }; |
---|
374 | |
---|
375 | ///Graph for bidirectional edges. |
---|
376 | |
---|
377 | ///The purpose of this graph structure is to handle graphs |
---|
378 | ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair |
---|
379 | ///of oppositely directed edges. |
---|
380 | ///There is a new edge map type called |
---|
381 | ///\ref SymListGraph::SymEdgeMap "SymEdgeMap" |
---|
382 | ///that complements this |
---|
383 | ///feature by |
---|
384 | ///storing shared values for the edge pairs. The usual |
---|
385 | ///\ref Graph::EdgeMap "EdgeMap" |
---|
386 | ///can be used |
---|
387 | ///as well. |
---|
388 | /// |
---|
389 | ///The oppositely directed edge can also be obtained easily |
---|
390 | ///using \ref opposite. |
---|
391 | /// |
---|
392 | ///Here erase(Edge) deletes a pair of edges. |
---|
393 | /// |
---|
394 | ///\todo this date structure need some reconsiderations. Maybe it |
---|
395 | ///should be implemented independently from ListGraph. |
---|
396 | |
---|
397 | } |
---|
398 | |
---|
399 | #endif //LEMON_LIST_GRAPH_H |
---|