[50] | 1 | /* |
---|
| 2 | *dijkstra |
---|
| 3 | *by jacint |
---|
[78] | 4 | *Performs Dijkstra's algorithm from Node s. |
---|
[50] | 5 | * |
---|
| 6 | *Constructor: |
---|
| 7 | * |
---|
[78] | 8 | *dijkstra(graph_type& G, NodeIt s, EdgeMap& distance) |
---|
[50] | 9 | * |
---|
| 10 | * |
---|
| 11 | * |
---|
| 12 | *Member functions: |
---|
| 13 | * |
---|
| 14 | *void run() |
---|
| 15 | * |
---|
| 16 | * The following function should be used after run() was already run. |
---|
| 17 | * |
---|
| 18 | * |
---|
[78] | 19 | *T dist(NodeIt v) : returns the distance from s to v. |
---|
[50] | 20 | * It is 0 if v is not reachable from s. |
---|
| 21 | * |
---|
| 22 | * |
---|
[78] | 23 | *EdgeIt pred(NodeIt v) |
---|
| 24 | * Returns the last Edge of a shortest s-v path. |
---|
[50] | 25 | * Returns an invalid iterator if v=s or v is not |
---|
| 26 | * reachable from s. |
---|
| 27 | * |
---|
| 28 | * |
---|
[78] | 29 | *bool reach(NodeIt v) : true if v is reachable from s |
---|
[50] | 30 | * |
---|
| 31 | * |
---|
| 32 | * |
---|
| 33 | * |
---|
| 34 | * |
---|
| 35 | *Problems: |
---|
| 36 | * |
---|
| 37 | *Heap implementation is needed, because the priority queue of stl |
---|
| 38 | *does not have a mathod for key-decrease, so we had to use here a |
---|
| 39 | *g\'any solution. |
---|
| 40 | * |
---|
| 41 | *The implementation of infinity would be desirable, see after line 100. |
---|
| 42 | */ |
---|
| 43 | |
---|
| 44 | #ifndef DIJKSTRA_HH |
---|
| 45 | #define DIJKSTRA_HH |
---|
| 46 | |
---|
| 47 | #include <queue> |
---|
| 48 | #include <algorithm> |
---|
| 49 | |
---|
| 50 | #include <marci_graph_traits.hh> |
---|
[78] | 51 | #include <marciMap.hh> |
---|
[50] | 52 | |
---|
| 53 | |
---|
| 54 | namespace std { |
---|
[105] | 55 | namespace hugo { |
---|
[50] | 56 | |
---|
| 57 | |
---|
| 58 | |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | template <typename graph_type, typename T> |
---|
| 62 | class dijkstra{ |
---|
[78] | 63 | typedef typename graph_traits<graph_type>::NodeIt NodeIt; |
---|
| 64 | typedef typename graph_traits<graph_type>::EdgeIt EdgeIt; |
---|
| 65 | typedef typename graph_traits<graph_type>::EachNodeIt EachNodeIt; |
---|
| 66 | typedef typename graph_traits<graph_type>::InEdgeIt InEdgeIt; |
---|
| 67 | typedef typename graph_traits<graph_type>::OutEdgeIt OutEdgeIt; |
---|
[50] | 68 | |
---|
| 69 | |
---|
| 70 | graph_type& G; |
---|
[78] | 71 | NodeIt s; |
---|
| 72 | NodeMap<graph_type, EdgeIt> predecessor; |
---|
| 73 | NodeMap<graph_type, T> distance; |
---|
| 74 | EdgeMap<graph_type, T> length; |
---|
| 75 | NodeMap<graph_type, bool> reached; |
---|
[50] | 76 | |
---|
| 77 | public : |
---|
| 78 | |
---|
| 79 | /* |
---|
[78] | 80 | The distance of all the Nodes is 0. |
---|
[50] | 81 | */ |
---|
[78] | 82 | dijkstra(graph_type& _G, NodeIt _s, EdgeMap<graph_type, T>& _length) : |
---|
[50] | 83 | G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { } |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | /*By Misi.*/ |
---|
[78] | 88 | struct Node_dist_comp |
---|
[50] | 89 | { |
---|
[78] | 90 | NodeMap<graph_type, T> &d; |
---|
| 91 | Node_dist_comp(NodeMap<graph_type, T> &_d) : d(_d) {} |
---|
[50] | 92 | |
---|
[78] | 93 | bool operator()(const NodeIt& u, const NodeIt& v) const |
---|
[50] | 94 | { return d.get(u) < d.get(v); } |
---|
| 95 | }; |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | void run() { |
---|
| 100 | |
---|
[78] | 101 | NodeMap<graph_type, bool> scanned(G, false); |
---|
| 102 | std::priority_queue<NodeIt, vector<NodeIt>, Node_dist_comp> |
---|
| 103 | heap(( Node_dist_comp(distance) )); |
---|
[50] | 104 | |
---|
| 105 | heap.push(s); |
---|
| 106 | reached.put(s, true); |
---|
| 107 | |
---|
| 108 | while (!heap.empty()) { |
---|
| 109 | |
---|
[78] | 110 | NodeIt v=heap.top(); |
---|
[50] | 111 | heap.pop(); |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | if (!scanned.get(v)) { |
---|
| 115 | |
---|
[78] | 116 | for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) { |
---|
| 117 | NodeIt w=G.head(e); |
---|
[50] | 118 | |
---|
| 119 | if (!scanned.get(w)) { |
---|
| 120 | if (!reached.get(w)) { |
---|
| 121 | reached.put(w,true); |
---|
| 122 | distance.put(w, distance.get(v)-length.get(e)); |
---|
| 123 | predecessor.put(w,e); |
---|
| 124 | } else if (distance.get(v)-length.get(e)>distance.get(w)) { |
---|
| 125 | distance.put(w, distance.get(v)-length.get(e)); |
---|
| 126 | predecessor.put(w,e); |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | heap.push(w); |
---|
| 130 | |
---|
| 131 | } |
---|
| 132 | |
---|
| 133 | } |
---|
| 134 | scanned.put(v,true); |
---|
| 135 | |
---|
| 136 | } // if (!scanned.get(v)) |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | } // while (!heap.empty()) |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | } //void run() |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | /* |
---|
[78] | 150 | *Returns the distance of the Node v. |
---|
| 151 | *It is 0 for the root and for the Nodes not |
---|
[50] | 152 | *reachable form the root. |
---|
| 153 | */ |
---|
[78] | 154 | T dist(NodeIt v) { |
---|
[50] | 155 | return -distance.get(v); |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | |
---|
| 160 | /* |
---|
[78] | 161 | * Returns the last Edge of a shortest s-v path. |
---|
[50] | 162 | * Returns an invalid iterator if v=root or v is not |
---|
| 163 | * reachable from the root. |
---|
| 164 | */ |
---|
[78] | 165 | EdgeIt pred(NodeIt v) { |
---|
[50] | 166 | if (v!=s) { return predecessor.get(v);} |
---|
[78] | 167 | else {return EdgeIt();} |
---|
[50] | 168 | } |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | |
---|
[78] | 172 | bool reach(NodeIt v) { |
---|
[50] | 173 | return reached.get(v); |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | };// class dijkstra |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | |
---|
[105] | 188 | } // namespace hugo |
---|
[50] | 189 | } |
---|
| 190 | #endif //DIJKSTRA_HH |
---|
| 191 | |
---|
| 192 | |
---|