COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/work/jacint/fib_heap.h @ 203:fc4699a76a6f

Last change on this file since 203:fc4699a76a6f was 173:de9849252e78, checked in by jacint, 21 years ago

* empty log message *

File size: 8.6 KB
RevLine 
[167]1// -*- C++ -*-
2/*
3 *template <typename Item,
4 *          typename Prio,
5 *          typename ItemIntMap,
6 *          typename Compare = std::less<Prio> >
7 *
8 *constructors:
9 *
10 *FibHeap(ItemIntMap),   FibHeap(ItemIntMap, Compare)
11 *
12 *Member functions:
13 *
14 *int size() : returns the number of elements in the heap
15 *
16 *bool empty() : true iff size()=0
17 *
18 *void set(Item, Prio) : calls push(Item, Prio) if Item is not
19 *     in the heap, and calls decrease/increase(Item, Prio) otherwise
20 *
21 *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item
22 *     mustn't be in the heap.
23 *
[173]24 *Item top() : returns the Item with least Prio.
25 *     Must be called only if heap is nonempty.
[167]26 *
27 *Prio prio() : returns the least Prio
[173]28 *     Must be called only if heap is nonempty.
29 *
[167]30 *Prio get(Item) : returns Prio of Item
[173]31 *     Must be called only if Item is in heap.
[167]32 *
33 *void pop() : deletes the Item with least Prio
34 *
35 *void erase(Item) : deletes Item from the heap if it was already there
36 *
37 *void decrease(Item, P) : decreases prio of Item to P.
38 *     Item must be in the heap with prio at least P.
39 *
40 *void increase(Item, P) : sets prio of Item to P.
41 *
42 *state_enum state(Item) : returns PRE_HEAP if Item has not been in the
43 *     heap until now, IN_HEAP if it is in the heap at the moment, and
44 *     POST_HEAP otherwise. In the latter case it is possible that Item
45 *     will get back to the heap again.
46 *
47 *In Fibonacci heaps, increase and erase are not efficient, in case of
48 *many calls to these operations, it is better to use bin_heap.
49 */
50
51#ifndef FIB_HEAP_H
52#define FIB_HEAP_H
53
54#include <vector>
55#include <functional>
56#include <math.h>
57
58namespace hugo {
59 
60  template <typename Item, typename Prio, typename ItemIntMap,
61    typename Compare = std::less<Prio> >
62 
63  class FibHeap {
64 
65    typedef Prio PrioType;
66   
67    class store;
68   
69    std::vector<store> container;
70    int minimum;
71    ItemIntMap &iimap;
72    Compare comp;
[173]73    int num_items;
[167]74
75    enum state_enum {
76      IN_HEAP = 0,
77      PRE_HEAP = -1,
78      POST_HEAP = -2
79    };
80   
81  public :
82   
[173]83    FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {}
[167]84    FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(),
[173]85      iimap(_iimap), comp(_comp), num_items() {}
[167]86   
87   
88    int size() const {
[173]89      return num_items;
[167]90    }
91
92
[173]93    bool empty() const { return num_items==0; }
[167]94
95
96    void set (Item const it, PrioType const value) {
97      int i=iimap.get(it);
98      if ( i >= 0 && container[i].in ) {
[173]99        if ( comp(value, container[i].prio) ) decrease(it, value);
[167]100        if ( comp(container[i].prio, value) ) increase(it, value);
101      } else push(it, value);
102    }
103   
104
105    void push (Item const it, PrioType const value) {
106      int i=iimap.get(it);     
107      if ( i < 0 ) {
108        int s=container.size();
109        iimap.set( it, s );     
110        store st;
111        st.name=it;
112        container.push_back(st);
113        i=s;
114      } else {
115        container[i].parent=container[i].child=-1;
116        container[i].degree=0;
117        container[i].in=true;
118        container[i].marked=false;
119      }
120
[173]121      if ( num_items ) {
[167]122        container[container[minimum].right_neighbor].left_neighbor=i;
123        container[i].right_neighbor=container[minimum].right_neighbor;
124        container[minimum].right_neighbor=i;
125        container[i].left_neighbor=minimum;
[173]126        if ( comp( value, container[minimum].prio) ) minimum=i;
[167]127      } else {
128        container[i].right_neighbor=container[i].left_neighbor=i;
129        minimum=i;     
130      }
131      container[i].prio=value;
[173]132      ++num_items;
[167]133    }
134   
135
136    Item top() const {
[173]137      return container[minimum].name;
[167]138    }
139   
140   
141    PrioType prio() const {
[173]142      return container[minimum].prio;
[167]143    }
144   
145
146    const PrioType get(const Item& it) const {
[173]147      return container[iimap.get(it)].prio;
[167]148    }
149
150
151    void pop() {
152      /*The first case is that there are only one root.*/
153      if ( container[minimum].left_neighbor==minimum ) {
154        container[minimum].in=false;
[173]155        if ( container[minimum].degree!=0 ) {
[167]156          makeroot(container[minimum].child);
157          minimum=container[minimum].child;
158          balance();
[173]159        }
[167]160      } else {
161        int right=container[minimum].right_neighbor;
162        unlace(minimum);
163        container[minimum].in=false;
164        if ( container[minimum].degree > 0 ) {
165          int left=container[minimum].left_neighbor;
166          int child=container[minimum].child;
167          int last_child=container[child].left_neighbor;
168       
169          makeroot(child);
170         
171          container[left].right_neighbor=child;
172          container[child].left_neighbor=left;
173          container[right].left_neighbor=last_child;
174          container[last_child].right_neighbor=right;
175        }
176        minimum=right;
177        balance();
178      } // the case where there are more roots
[173]179      --num_items;   
[167]180    }
181
182   
183    void erase (const Item& it) {
184      int i=iimap.get(it);
185     
[173]186      if ( i >= 0 && container[i].in ) {       
187        if ( container[i].parent!=-1 ) {
188          int p=container[i].parent;
189          cut(i,p);         
190          cascade(p);
191        }
192        minimum=i;     //As if its prio would be -infinity
193        pop();
194      }
195    }
[167]196   
197
198    void decrease (Item it, PrioType const value) {
199      int i=iimap.get(it);
200      container[i].prio=value;
201      int p=container[i].parent;
202     
203      if ( p!=-1 && comp(value, container[p].prio) ) {
204        cut(i,p);           
205        cascade(p);
[173]206      }     
207      if ( comp(value, container[minimum].prio) ) minimum=i;
[167]208    }
209   
210
211    void increase (Item it, PrioType const value) {
212      erase(it);
213      push(it, value);
214    }
215
216
217    state_enum state(const Item &it) const {
218      int i=iimap.get(it);
219      if( i>=0 ) {
220        if ( container[i].in ) i=0;
221        else i=-2;
222      }
223      return state_enum(i);
224    }
225
226
227  private:
228   
229    void balance() {     
230
231    int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
232 
233    std::vector<int> A(maxdeg,-1);
234   
235    /*
236     *Recall that now minimum does not point to the minimum prio element.
237     *We set minimum to this during balance().
238     */
239    int anchor=container[minimum].left_neighbor;
240    int next=minimum;
241    bool end=false;
242       
243       do {
244        int active=next;
245        if ( anchor==active ) end=true;
246        int d=container[active].degree;
247        next=container[active].right_neighbor;
248
249        while (A[d]!=-1) {       
250          if( comp(container[active].prio, container[A[d]].prio) ) {
251            fuse(active,A[d]);
252          } else {
253            fuse(A[d],active);
254            active=A[d];
255          }
256          A[d]=-1;
257          ++d;
258        }       
259        A[d]=active;
260       } while ( !end );
261
262
263       while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
264       int s=minimum;
265       int m=minimum;
266       do { 
267         if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
268         s=container[s].right_neighbor;
269       } while ( s != m );
270    }
271
272
273    void makeroot (int c) {
274      int s=c;
275      do { 
276        container[s].parent=-1;
277        s=container[s].right_neighbor;
278      } while ( s != c );
279    }
280   
281
282    void cut (int a, int b) {   
283      /*
284       *Replacing a from the children of b.
285       */
286      --container[b].degree;
287     
288      if ( container[b].degree !=0 ) {
289        int child=container[b].child;
290        if ( child==a )
291          container[b].child=container[child].right_neighbor;
292        unlace(a);
293      }
294     
295     
[173]296      /*Lacing a to the roots.*/
[167]297      int right=container[minimum].right_neighbor;
298      container[minimum].right_neighbor=a;
299      container[a].left_neighbor=minimum;
300      container[a].right_neighbor=right;
301      container[right].left_neighbor=a;
302
303      container[a].parent=-1;
304      container[a].marked=false;
305    }
306
307
308    void cascade (int a)
309    {
310      if ( container[a].parent!=-1 ) {
311        int p=container[a].parent;
312       
313        if ( container[a].marked==false ) container[a].marked=true;
314        else {
315          cut(a,p);
316          cascade(p);
317        }
318      }
319    }
320
321
322    void fuse (int a, int b) {
323      unlace(b);
324     
325      /*Lacing b under a.*/
326      container[b].parent=a;
327
328      if (container[a].degree==0) {
329        container[b].left_neighbor=b;
330        container[b].right_neighbor=b;
331        container[a].child=b;   
332      } else {
333        int child=container[a].child;
334        int last_child=container[child].left_neighbor;
335        container[child].left_neighbor=b;
336        container[b].right_neighbor=child;
337        container[last_child].right_neighbor=b;
338        container[b].left_neighbor=last_child;
339      }
340
341      ++container[a].degree;
342     
343      container[b].marked=false;
344    }
345
346
347    /*
348     *It is invoked only if a has siblings.
349     */
350    void unlace (int a) {     
351      int leftn=container[a].left_neighbor;
352      int rightn=container[a].right_neighbor;
353      container[leftn].right_neighbor=rightn;
354      container[rightn].left_neighbor=leftn;
355    }
356
357
358    class store {
359      friend class FibHeap;
360     
361      Item name;
362      int parent;
363      int left_neighbor;
364      int right_neighbor;
365      int child;
366      int degree; 
367      bool marked;
368      bool in;
369      PrioType prio;
370
371      store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
372    };
373   
374  };
375 
376} //namespace hugo
377#endif
Note: See TracBrowser for help on using the repository browser.