COIN-OR::LEMON - Graph Library

source: lemon-0.x/src/work/jacint/max_flow.h @ 662:0155001b6f65

Last change on this file since 662:0155001b6f65 was 656:9971eb8bfbe8, checked in by marci, 21 years ago

max_flow.h bug correction

File size: 34.4 KB
RevLine 
[478]1// -*- C++ -*-
[480]2#ifndef HUGO_MAX_FLOW_H
3#define HUGO_MAX_FLOW_H
[478]4
5#include <vector>
6#include <queue>
7#include <stack>
8
[557]9#include <hugo/graph_wrapper.h>
[602]10#include <bfs_dfs.h>
[555]11#include <hugo/invalid.h>
12#include <hugo/maps.h>
[640]13#include <hugo/for_each_macros.h>
[478]14
[488]15/// \file
[631]16/// \brief Maximum flow algorithms.
[615]17/// \ingroup galgs
[478]18
19namespace hugo {
20
[631]21  /// \addtogroup galgs
22  /// @{                                                                                                                                       
23  ///Maximum flow algorithms class.
[488]24
[631]25  ///This class provides various algorithms for finding a flow of
26  ///maximum value in a directed graph. The \e source node, the \e
27  ///target node, the \e capacity of the edges and the \e starting \e
[647]28  ///flow value of the edges should be passed to the algorithm through the
[631]29  ///constructor. It is possible to change these quantities using the
30  ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
31  ///\ref resetFlow. Before any subsequent runs of any algorithm of
[647]32  ///the class \ref resetFlow should be called.
33
34  ///After running an algorithm of the class, the actual flow value
35  ///can be obtained by calling \ref flowValue(). The minimum
[631]36  ///value cut can be written into a \c node map of \c bools by
37  ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
38  ///the inclusionwise minimum and maximum of the minimum value
39  ///cuts, resp.)                                                                                                                               
[632]40  ///\param Graph The directed graph type the algorithm runs on.
[631]41  ///\param Num The number type of the capacities and the flow values.
[647]42  ///\param CapMap The capacity map type.
43  ///\param FlowMap The flow map type.                                                                                                           
[631]44  ///\author Marton Makai, Jacint Szabo
[615]45  template <typename Graph, typename Num,
46            typename CapMap=typename Graph::template EdgeMap<Num>,
[478]47            typename FlowMap=typename Graph::template EdgeMap<Num> >
48  class MaxFlow {
[615]49  protected:
[478]50    typedef typename Graph::Node Node;
51    typedef typename Graph::NodeIt NodeIt;
[631]52    typedef typename Graph::EdgeIt EdgeIt;
[478]53    typedef typename Graph::OutEdgeIt OutEdgeIt;
54    typedef typename Graph::InEdgeIt InEdgeIt;
55
56    typedef typename std::vector<std::stack<Node> > VecStack;
57    typedef typename Graph::template NodeMap<Node> NNMap;
58    typedef typename std::vector<Node> VecNode;
59
60    const Graph* g;
61    Node s;
62    Node t;
[615]63    const CapMap* capacity;
[478]64    FlowMap* flow;
65    int n;      //the number of nodes of G
[653]66    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
67    //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
[478]68    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
69    typedef typename ResGW::Edge ResGWEdge;
70    //typedef typename ResGW::template NodeMap<bool> ReachedMap;
71    typedef typename Graph::template NodeMap<int> ReachedMap;
[631]72
73
74    //level works as a bool map in augmenting path algorithms and is
75    //used by bfs for storing reached information.  In preflow, it
76    //shows the levels of nodes.     
[478]77    ReachedMap level;
[631]78
79    //excess is needed only in preflow
[615]80    typename Graph::template NodeMap<Num> excess;
[631]81
82    //fixme   
83//   protected:
[602]84    //     MaxFlow() { }
[615]85    //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
86    //       FlowMap& _flow)
[602]87    //       {
[615]88    //  g=&_G;
89    //  s=_s;
90    //  t=_t;
[602]91    //  capacity=&_capacity;
92    //  flow=&_flow;
93    //  n=_G.nodeNum;
[615]94    //  level.set (_G); //kellene vmi ilyesmi fv
[602]95    //  excess(_G,0); //itt is
96    //       }
[478]97
[615]98    // constants used for heuristics
99    static const int H0=20;
100    static const int H1=1;
101
[478]102  public:
[615]103
[631]104    ///Indicates the property of the starting flow.
105
106    ///Indicates the property of the starting flow. The meanings are as follows:
107    ///- \c ZERO_FLOW: constant zero flow
108    ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
109    ///the sum of the out-flows in every node except the \e source and
110    ///the \e target.
111    ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
112    ///least the sum of the out-flows in every node except the \e source.
113    ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be
114    ///set to the constant zero flow in the beginning of the algorithm in this case.
[647]115    enum FlowEnum{
[615]116      ZERO_FLOW,
117      GEN_FLOW,
118      PRE_FLOW,
119      NO_FLOW
[478]120    };
121
[647]122    enum StatusEnum {
123      AFTER_NOTHING,
124      AFTER_AUGMENTING,
[656]125      AFTER_FAST_AUGMENTING,
[647]126      AFTER_PRE_FLOW_PHASE_1,     
127      AFTER_PRE_FLOW_PHASE_2
128    };
129
130    /// Don not needle this flag only if necessary.
131    StatusEnum status;
132    int number_of_augmentations;
133
134
135    template<typename IntMap>
136    class TrickyReachedMap {
137    protected:
138      IntMap* map;
139      int* number_of_augmentations;
140    public:
141      TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) :
142        map(&_map), number_of_augmentations(&_number_of_augmentations) { }
143      void set(const Node& n, bool b) {
[650]144        if (b)
145          map->set(n, *number_of_augmentations);
146        else
147          map->set(n, *number_of_augmentations-1);
[647]148      }
149      bool operator[](const Node& n) const {
150        return (*map)[n]==*number_of_augmentations;
151      }
152    };
153   
[615]154    MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
[478]155            FlowMap& _flow) :
[615]156      g(&_G), s(_s), t(_t), capacity(&_capacity),
[647]157      flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0),
158      status(AFTER_NOTHING), number_of_augmentations(0) { }
[478]159
[631]160    ///Runs a maximum flow algorithm.
161
162    ///Runs a preflow algorithm, which is the fastest maximum flow
163    ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
164    ///\pre The starting flow must be
165    /// - a constant zero flow if \c fe is \c ZERO_FLOW,
166    /// - an arbitary flow if \c fe is \c GEN_FLOW,
167    /// - an arbitary preflow if \c fe is \c PRE_FLOW,
168    /// - any map if \c fe is NO_FLOW.
[647]169    void run(FlowEnum fe=ZERO_FLOW) {
[615]170      preflow(fe);
[478]171    }
[615]172
[647]173                                                                             
[631]174    ///Runs a preflow algorithm. 
175
176    ///Runs a preflow algorithm. The preflow algorithms provide the
177    ///fastest way to compute a maximum flow in a directed graph.
178    ///\pre The starting flow must be
179    /// - a constant zero flow if \c fe is \c ZERO_FLOW,
180    /// - an arbitary flow if \c fe is \c GEN_FLOW,
181    /// - an arbitary preflow if \c fe is \c PRE_FLOW,
182    /// - any map if \c fe is NO_FLOW.
[647]183    void preflow(FlowEnum fe) {
[631]184      preflowPhase1(fe);
185      preflowPhase2();
[478]186    }
[631]187    // Heuristics:
188    //   2 phase
189    //   gap
190    //   list 'level_list' on the nodes on level i implemented by hand
191    //   stack 'active' on the active nodes on level i                                                                                   
192    //   runs heuristic 'highest label' for H1*n relabels
193    //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
194    //   Parameters H0 and H1 are initialized to 20 and 1.
[478]195
[631]196    ///Runs the first phase of the preflow algorithm.
[478]197
[631]198    ///The preflow algorithm consists of two phases, this method runs the
199    ///first phase. After the first phase the maximum flow value and a
200    ///minimum value cut can already be computed, though a maximum flow
201    ///is net yet obtained. So after calling this method \ref flowValue
202    ///and \ref actMinCut gives proper results.
203    ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
204    ///give minimum value cuts unless calling \ref preflowPhase2.
205    ///\pre The starting flow must be
206    /// - a constant zero flow if \c fe is \c ZERO_FLOW,
207    /// - an arbitary flow if \c fe is \c GEN_FLOW,
208    /// - an arbitary preflow if \c fe is \c PRE_FLOW,
209    /// - any map if \c fe is NO_FLOW.
[647]210    void preflowPhase1(FlowEnum fe);
[631]211
212    ///Runs the second phase of the preflow algorithm.
213
214    ///The preflow algorithm consists of two phases, this method runs
215    ///the second phase. After calling \ref preflowPhase1 and then
216    ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
217    ///\ref minMinCut and \ref maxMinCut give proper results.
218    ///\pre \ref preflowPhase1 must be called before.
219    void preflowPhase2();
[478]220
[615]221    /// Starting from a flow, this method searches for an augmenting path
222    /// according to the Edmonds-Karp algorithm
223    /// and augments the flow on if any.
[487]224    /// The return value shows if the augmentation was succesful.
[478]225    bool augmentOnShortestPath();
[647]226    bool augmentOnShortestPath2();
[478]227
[615]228    /// Starting from a flow, this method searches for an augmenting blocking
229    /// flow according to Dinits' algorithm and augments the flow on if any.
230    /// The blocking flow is computed in a physically constructed
[485]231    /// residual graph of type \c Mutablegraph.
[487]232    /// The return value show sif the augmentation was succesful.
[478]233    template<typename MutableGraph> bool augmentOnBlockingFlow();
234
[615]235    /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
[485]236    /// residual graph is not constructed physically.
[487]237    /// The return value shows if the augmentation was succesful.
[478]238    bool augmentOnBlockingFlow2();
239
[631]240    /// Returns the maximum value of a flow.
241
242    /// Returns the maximum value of a flow, by counting the
243    /// over-flow of the target node \ref t.
244    /// It can be called already after running \ref preflowPhase1.
[647]245    Num flowValue() const {
[478]246      Num a=0;
[615]247      FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
248      FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
[478]249      return a;
[631]250      //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
[478]251    }
252
[631]253    ///Returns a minimum value cut after calling \ref preflowPhase1.
254
255    ///After the first phase of the preflow algorithm the maximum flow
256    ///value and a minimum value cut can already be computed. This
257    ///method can be called after running \ref preflowPhase1 for
258    ///obtaining a minimum value cut.
259    /// \warning Gives proper result only right after calling \ref
260    /// preflowPhase1.
[615]261    /// \todo We have to make some status variable which shows the
262    /// actual state
263    /// of the class. This enables us to determine which methods are valid
[485]264    /// for MinCut computation
[478]265    template<typename _CutMap>
[647]266    void actMinCut(_CutMap& M) const {
[478]267      NodeIt v;
[647]268      switch (status) {
[656]269      case AFTER_PRE_FLOW_PHASE_1:
[647]270        for(g->first(v); g->valid(v); g->next(v)) {
271          if (level[v] < n) {
272            M.set(v, false);
273          } else {
274            M.set(v, true);
275          }
[485]276        }
[647]277        break;
[656]278      case AFTER_PRE_FLOW_PHASE_2:
279      case AFTER_NOTHING:
[647]280        minMinCut(M);
281        break;
[656]282      case AFTER_AUGMENTING:
[647]283        for(g->first(v); g->valid(v); g->next(v)) {
284          if (level[v]) {
285            M.set(v, true);
286          } else {
287            M.set(v, false);
288          }
289        }
290        break;
[656]291      case AFTER_FAST_AUGMENTING:
292        for(g->first(v); g->valid(v); g->next(v)) {
293          if (level[v]==number_of_augmentations) {
294            M.set(v, true);
295          } else {
296            M.set(v, false);
297          }
298        }
299        break;
[478]300      }
301    }
302
[631]303    ///Returns the inclusionwise minimum of the minimum value cuts.
304
305    ///Sets \c M to the characteristic vector of the minimum value cut
306    ///which is inclusionwise minimum. It is computed by processing
307    ///a bfs from the source node \c s in the residual graph.
308    ///\pre M should be a node map of bools initialized to false.
309    ///\pre \c flow must be a maximum flow.
[478]310    template<typename _CutMap>
[647]311    void minMinCut(_CutMap& M) const {
[478]312      std::queue<Node> queue;
[615]313
314      M.set(s,true);
[478]315      queue.push(s);
316
317      while (!queue.empty()) {
318        Node w=queue.front();
319        queue.pop();
320
321        OutEdgeIt e;
322        for(g->first(e,w) ; g->valid(e); g->next(e)) {
323          Node v=g->head(e);
324          if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
325            queue.push(v);
326            M.set(v, true);
327          }
[615]328        }
[478]329
330        InEdgeIt f;
331        for(g->first(f,w) ; g->valid(f); g->next(f)) {
332          Node v=g->tail(f);
333          if (!M[v] && (*flow)[f] > 0 ) {
334            queue.push(v);
335            M.set(v, true);
336          }
[615]337        }
[478]338      }
339    }
340
[631]341    ///Returns the inclusionwise maximum of the minimum value cuts.
[478]342
[631]343    ///Sets \c M to the characteristic vector of the minimum value cut
344    ///which is inclusionwise maximum. It is computed by processing a
345    ///backward bfs from the target node \c t in the residual graph.
346    ///\pre M should be a node map of bools initialized to false.
347    ///\pre \c flow must be a maximum flow.
[478]348    template<typename _CutMap>
[647]349    void maxMinCut(_CutMap& M) const {
[478]350
351      NodeIt v;
352      for(g->first(v) ; g->valid(v); g->next(v)) {
353        M.set(v, true);
354      }
355
356      std::queue<Node> queue;
[615]357
358      M.set(t,false);
[478]359      queue.push(t);
360
361      while (!queue.empty()) {
362        Node w=queue.front();
363        queue.pop();
364
365        InEdgeIt e;
366        for(g->first(e,w) ; g->valid(e); g->next(e)) {
367          Node v=g->tail(e);
368          if (M[v] && (*flow)[e] < (*capacity)[e] ) {
369            queue.push(v);
370            M.set(v, false);
371          }
372        }
[615]373
[478]374        OutEdgeIt f;
375        for(g->first(f,w) ; g->valid(f); g->next(f)) {
376          Node v=g->head(f);
377          if (M[v] && (*flow)[f] > 0 ) {
378            queue.push(v);
379            M.set(v, false);
380          }
381        }
382      }
383    }
384
[631]385    ///Returns a minimum value cut.
[478]386
[631]387    ///Sets \c M to the characteristic vector of a minimum value cut.
388    ///\pre M should be a node map of bools initialized to false.
389    ///\pre \c flow must be a maximum flow.   
[478]390    template<typename CutMap>
[647]391    void minCut(CutMap& M) const { minMinCut(M); }
[478]392
[631]393    ///Resets the source node to \c _s.
394
395    ///Resets the source node to \c _s.
396    ///
[647]397    void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
[631]398
399    ///Resets the target node to \c _t.
400
401    ///Resets the target node to \c _t.
[487]402    ///
[647]403    void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
[615]404
[631]405    /// Resets the edge map of the capacities to _cap.
406
407    /// Resets the edge map of the capacities to _cap.
408    ///
[647]409    void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
[615]410
[631]411    /// Resets the edge map of the flows to _flow.
412
413    /// Resets the edge map of the flows to _flow.
414    ///
[647]415    void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
[478]416
417
418  private:
419
420    int push(Node w, VecStack& active) {
[615]421
[478]422      int lev=level[w];
423      Num exc=excess[w];
424      int newlevel=n;       //bound on the next level of w
[615]425
[478]426      OutEdgeIt e;
427      for(g->first(e,w); g->valid(e); g->next(e)) {
[615]428
429        if ( (*flow)[e] >= (*capacity)[e] ) continue;
430        Node v=g->head(e);
431
[478]432        if( lev > level[v] ) { //Push is allowed now
[615]433
[478]434          if ( excess[v]<=0 && v!=t && v!=s ) {
435            int lev_v=level[v];
436            active[lev_v].push(v);
437          }
[615]438
[478]439          Num cap=(*capacity)[e];
440          Num flo=(*flow)[e];
441          Num remcap=cap-flo;
[615]442
[478]443          if ( remcap >= exc ) { //A nonsaturating push.
[615]444
[478]445            flow->set(e, flo+exc);
446            excess.set(v, excess[v]+exc);
447            exc=0;
[615]448            break;
449
[478]450          } else { //A saturating push.
451            flow->set(e, cap);
452            excess.set(v, excess[v]+remcap);
453            exc-=remcap;
454          }
455        } else if ( newlevel > level[v] ) newlevel = level[v];
[615]456      } //for out edges wv
457
458      if ( exc > 0 ) {
[478]459        InEdgeIt e;
460        for(g->first(e,w); g->valid(e); g->next(e)) {
[615]461
462          if( (*flow)[e] <= 0 ) continue;
463          Node v=g->tail(e);
464
[478]465          if( lev > level[v] ) { //Push is allowed now
[615]466
[478]467            if ( excess[v]<=0 && v!=t && v!=s ) {
468              int lev_v=level[v];
469              active[lev_v].push(v);
470            }
[615]471
[478]472            Num flo=(*flow)[e];
[615]473
[478]474            if ( flo >= exc ) { //A nonsaturating push.
[615]475
[478]476              flow->set(e, flo-exc);
477              excess.set(v, excess[v]+exc);
478              exc=0;
[615]479              break;
[478]480            } else {  //A saturating push.
[615]481
[478]482              excess.set(v, excess[v]+flo);
483              exc-=flo;
484              flow->set(e,0);
[615]485            }
[478]486          } else if ( newlevel > level[v] ) newlevel = level[v];
487        } //for in edges vw
[615]488
[478]489      } // if w still has excess after the out edge for cycle
[615]490
[478]491      excess.set(w, exc);
[615]492
[478]493      return newlevel;
[485]494    }
[478]495
496
[647]497    void preflowPreproc(FlowEnum fe, VecStack& active,
[615]498                        VecNode& level_list, NNMap& left, NNMap& right)
[602]499    {
[615]500      std::queue<Node> bfs_queue;
[478]501
[615]502      switch (fe) {
[631]503      case NO_FLOW:   //flow is already set to const zero in this case
[615]504      case ZERO_FLOW:
[602]505        {
506          //Reverse_bfs from t, to find the starting level.
507          level.set(t,0);
508          bfs_queue.push(t);
[615]509
[602]510          while (!bfs_queue.empty()) {
[615]511
512            Node v=bfs_queue.front();
[602]513            bfs_queue.pop();
514            int l=level[v]+1;
[615]515
[602]516            InEdgeIt e;
517            for(g->first(e,v); g->valid(e); g->next(e)) {
518              Node w=g->tail(e);
519              if ( level[w] == n && w != s ) {
520                bfs_queue.push(w);
521                Node first=level_list[l];
522                if ( g->valid(first) ) left.set(first,w);
523                right.set(w,first);
524                level_list[l]=w;
525                level.set(w, l);
526              }
527            }
528          }
[615]529
[602]530          //the starting flow
531          OutEdgeIt e;
[615]532          for(g->first(e,s); g->valid(e); g->next(e))
[602]533            {
534              Num c=(*capacity)[e];
535              if ( c <= 0 ) continue;
536              Node w=g->head(e);
[615]537              if ( level[w] < n ) {
[602]538                if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
[615]539                flow->set(e, c);
[602]540                excess.set(w, excess[w]+c);
541              }
542            }
543          break;
544        }
[615]545
[602]546      case GEN_FLOW:
[615]547      case PRE_FLOW:
[602]548        {
[615]549          //Reverse_bfs from t in the residual graph,
[602]550          //to find the starting level.
551          level.set(t,0);
552          bfs_queue.push(t);
[615]553
[602]554          while (!bfs_queue.empty()) {
[615]555
556            Node v=bfs_queue.front();
[602]557            bfs_queue.pop();
558            int l=level[v]+1;
[615]559
[602]560            InEdgeIt e;
561            for(g->first(e,v); g->valid(e); g->next(e)) {
562              if ( (*capacity)[e] <= (*flow)[e] ) continue;
563              Node w=g->tail(e);
564              if ( level[w] == n && w != s ) {
565                bfs_queue.push(w);
566                Node first=level_list[l];
567                if ( g->valid(first) ) left.set(first,w);
568                right.set(w,first);
569                level_list[l]=w;
570                level.set(w, l);
571              }
572            }
[615]573
[602]574            OutEdgeIt f;
575            for(g->first(f,v); g->valid(f); g->next(f)) {
576              if ( 0 >= (*flow)[f] ) continue;
577              Node w=g->head(f);
578              if ( level[w] == n && w != s ) {
579                bfs_queue.push(w);
580                Node first=level_list[l];
581                if ( g->valid(first) ) left.set(first,w);
582                right.set(w,first);
583                level_list[l]=w;
584                level.set(w, l);
585              }
586            }
587          }
[615]588
589
[602]590          //the starting flow
591          OutEdgeIt e;
[615]592          for(g->first(e,s); g->valid(e); g->next(e))
[602]593            {
594              Num rem=(*capacity)[e]-(*flow)[e];
595              if ( rem <= 0 ) continue;
596              Node w=g->head(e);
[615]597              if ( level[w] < n ) {
[602]598                if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
[615]599                flow->set(e, (*capacity)[e]);
[602]600                excess.set(w, excess[w]+rem);
601              }
602            }
[615]603
[602]604          InEdgeIt f;
[615]605          for(g->first(f,s); g->valid(f); g->next(f))
[602]606            {
607              if ( (*flow)[f] <= 0 ) continue;
608              Node w=g->tail(f);
[615]609              if ( level[w] < n ) {
[602]610                if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
611                excess.set(w, excess[w]+(*flow)[f]);
[615]612                flow->set(f, 0);
[602]613              }
[615]614            }
[602]615          break;
[615]616        } //case PRE_FLOW
[602]617      }
618    } //preflowPreproc
[478]619
620
621
[615]622    void relabel(Node w, int newlevel, VecStack& active,
623                 VecNode& level_list, NNMap& left,
624                 NNMap& right, int& b, int& k, bool what_heur )
[478]625    {
626
[615]627      Num lev=level[w];
628
[478]629      Node right_n=right[w];
630      Node left_n=left[w];
[615]631
[478]632      //unlacing starts
633      if ( g->valid(right_n) ) {
634        if ( g->valid(left_n) ) {
635          right.set(left_n, right_n);
636          left.set(right_n, left_n);
637        } else {
[615]638          level_list[lev]=right_n;
[478]639          left.set(right_n, INVALID);
[615]640        }
[478]641      } else {
642        if ( g->valid(left_n) ) {
643          right.set(left_n, INVALID);
[615]644        } else {
645          level_list[lev]=INVALID;
646        }
647      }
[478]648      //unlacing ends
[615]649
[478]650      if ( !g->valid(level_list[lev]) ) {
[615]651
[478]652        //gapping starts
653        for (int i=lev; i!=k ; ) {
654          Node v=level_list[++i];
655          while ( g->valid(v) ) {
656            level.set(v,n);
657            v=right[v];
658          }
659          level_list[i]=INVALID;
660          if ( !what_heur ) {
661            while ( !active[i].empty() ) {
662              active[i].pop();    //FIXME: ezt szebben kene
663            }
[615]664          }
[478]665        }
[615]666
[478]667        level.set(w,n);
668        b=lev-1;
669        k=b;
670        //gapping ends
[615]671
[478]672      } else {
[615]673
674        if ( newlevel == n ) level.set(w,n);
[478]675        else {
676          level.set(w,++newlevel);
677          active[newlevel].push(w);
678          if ( what_heur ) b=newlevel;
679          if ( k < newlevel ) ++k;      //now k=newlevel
680          Node first=level_list[newlevel];
681          if ( g->valid(first) ) left.set(first,w);
682          right.set(w,first);
683          left.set(w,INVALID);
684          level_list[newlevel]=w;
685        }
686      }
[615]687
[478]688    } //relabel
689
690
[615]691    template<typename MapGraphWrapper>
[478]692    class DistanceMap {
693    protected:
694      const MapGraphWrapper* g;
[615]695      typename MapGraphWrapper::template NodeMap<int> dist;
[478]696    public:
697      DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
[615]698      void set(const typename MapGraphWrapper::Node& n, int a) {
699        dist.set(n, a);
[478]700      }
[647]701      int operator[](const typename MapGraphWrapper::Node& n) const {
702        return dist[n];
703      }
[615]704      //       int get(const typename MapGraphWrapper::Node& n) const {
[485]705      //        return dist[n]; }
[615]706      //       bool get(const typename MapGraphWrapper::Edge& e) const {
[485]707      //        return (dist.get(g->tail(e))<dist.get(g->head(e))); }
[615]708      bool operator[](const typename MapGraphWrapper::Edge& e) const {
709        return (dist[g->tail(e)]<dist[g->head(e)]);
[478]710      }
711    };
[615]712
[478]713  };
714
715
716  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
[647]717  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
[478]718  {
[615]719
720    int heur0=(int)(H0*n);  //time while running 'bound decrease'
[485]721    int heur1=(int)(H1*n);  //time while running 'highest label'
722    int heur=heur1;         //starting time interval (#of relabels)
723    int numrelabel=0;
[615]724
725    bool what_heur=1;
[485]726    //It is 0 in case 'bound decrease' and 1 in case 'highest label'
[478]727
[615]728    bool end=false;
729    //Needed for 'bound decrease', true means no active nodes are above bound
730    //b.
[478]731
[485]732    int k=n-2;  //bound on the highest level under n containing a node
733    int b=k;    //bound on the highest level under n of an active node
[615]734
[485]735    VecStack active(n);
[615]736
[485]737    NNMap left(*g, INVALID);
738    NNMap right(*g, INVALID);
739    VecNode level_list(n,INVALID);
740    //List of the nodes in level i<n, set to n.
[478]741
[485]742    NodeIt v;
743    for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
744    //setting each node to level n
[615]745
[631]746    if ( fe == NO_FLOW ) {
747      EdgeIt e;
748      for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
749    }
750
751    switch (fe) { //computing the excess
[615]752    case PRE_FLOW:
[485]753      {
754        NodeIt v;
755        for(g->first(v); g->valid(v); g->next(v)) {
[478]756          Num exc=0;
[615]757
[478]758          InEdgeIt e;
[485]759          for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
[478]760          OutEdgeIt f;
[485]761          for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
[615]762
763          excess.set(v,exc);
764
[485]765          //putting the active nodes into the stack
766          int lev=level[v];
767          if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
[478]768        }
769        break;
770      }
[485]771    case GEN_FLOW:
772      {
[631]773        NodeIt v;
774        for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
775
[485]776        Num exc=0;
777        InEdgeIt e;
778        for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
779        OutEdgeIt f;
780        for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
[615]781        excess.set(t,exc);
[485]782        break;
783      }
[631]784    case ZERO_FLOW:
785    case NO_FLOW:
786      {
787        NodeIt v;
788        for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
789        break;
790      }
[485]791    }
[615]792
793    preflowPreproc(fe, active, level_list, left, right);
794    //End of preprocessing
795
796
[485]797    //Push/relabel on the highest level active nodes.
798    while ( true ) {
799      if ( b == 0 ) {
800        if ( !what_heur && !end && k > 0 ) {
801          b=k;
802          end=true;
803        } else break;
804      }
[615]805
806      if ( active[b].empty() ) --b;
[485]807      else {
[615]808        end=false;
[485]809        Node w=active[b].top();
810        active[b].pop();
811        int newlevel=push(w,active);
[615]812        if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
[485]813                                     left, right, b, k, what_heur);
[615]814
815        ++numrelabel;
[485]816        if ( numrelabel >= heur ) {
817          numrelabel=0;
818          if ( what_heur ) {
819            what_heur=0;
820            heur=heur0;
821            end=false;
822          } else {
823            what_heur=1;
824            heur=heur1;
[615]825            b=k;
[485]826          }
[478]827        }
[615]828      }
829    }
[647]830
831    status=AFTER_PRE_FLOW_PHASE_1;
[485]832  }
[478]833
834
835
836  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
[631]837  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
[478]838  {
[615]839
[485]840    int k=n-2;  //bound on the highest level under n containing a node
841    int b=k;    //bound on the highest level under n of an active node
[615]842
[485]843    VecStack active(n);
844    level.set(s,0);
845    std::queue<Node> bfs_queue;
846    bfs_queue.push(s);
[615]847
[485]848    while (!bfs_queue.empty()) {
[615]849
850      Node v=bfs_queue.front();
[485]851      bfs_queue.pop();
852      int l=level[v]+1;
[615]853
[485]854      InEdgeIt e;
855      for(g->first(e,v); g->valid(e); g->next(e)) {
856        if ( (*capacity)[e] <= (*flow)[e] ) continue;
857        Node u=g->tail(e);
[615]858        if ( level[u] >= n ) {
[485]859          bfs_queue.push(u);
860          level.set(u, l);
861          if ( excess[u] > 0 ) active[l].push(u);
[478]862        }
863      }
[615]864
[485]865      OutEdgeIt f;
866      for(g->first(f,v); g->valid(f); g->next(f)) {
867        if ( 0 >= (*flow)[f] ) continue;
868        Node u=g->head(f);
[615]869        if ( level[u] >= n ) {
[485]870          bfs_queue.push(u);
871          level.set(u, l);
872          if ( excess[u] > 0 ) active[l].push(u);
873        }
874      }
875    }
876    b=n-2;
[478]877
[485]878    while ( true ) {
[615]879
[485]880      if ( b == 0 ) break;
[478]881
[615]882      if ( active[b].empty() ) --b;
[485]883      else {
884        Node w=active[b].top();
885        active[b].pop();
[615]886        int newlevel=push(w,active);
[478]887
[485]888        //relabel
889        if ( excess[w] > 0 ) {
890          level.set(w,++newlevel);
891          active[newlevel].push(w);
892          b=newlevel;
893        }
894      }  // if stack[b] is nonempty
895    } // while(true)
[647]896
897    status=AFTER_PRE_FLOW_PHASE_2;
[485]898  }
[478]899
900
901
902  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
[615]903  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
[478]904  {
[485]905    ResGW res_graph(*g, *capacity, *flow);
906    bool _augment=false;
[615]907
[485]908    //ReachedMap level(res_graph);
909    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
910    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
911    bfs.pushAndSetReached(s);
[615]912
913    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
[485]914    pred.set(s, INVALID);
[615]915
[485]916    typename ResGW::template NodeMap<Num> free(res_graph);
[615]917
[485]918    //searching for augmenting path
[615]919    while ( !bfs.finished() ) {
[485]920      ResGWOutEdgeIt e=bfs;
921      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
922        Node v=res_graph.tail(e);
923        Node w=res_graph.head(e);
924        pred.set(w, e);
925        if (res_graph.valid(pred[v])) {
926          free.set(w, std::min(free[v], res_graph.resCap(e)));
927        } else {
[615]928          free.set(w, res_graph.resCap(e));
[478]929        }
[485]930        if (res_graph.head(e)==t) { _augment=true; break; }
931      }
[615]932
[485]933      ++bfs;
934    } //end of searching augmenting path
[478]935
[485]936    if (_augment) {
937      Node n=t;
938      Num augment_value=free[t];
[615]939      while (res_graph.valid(pred[n])) {
[485]940        ResGWEdge e=pred[n];
[615]941        res_graph.augment(e, augment_value);
[485]942        n=res_graph.tail(e);
[478]943      }
[485]944    }
[478]945
[647]946    status=AFTER_AUGMENTING;
[485]947    return _augment;
948  }
[478]949
950
[647]951  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
952  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
953  {
954    ResGW res_graph(*g, *capacity, *flow);
955    bool _augment=false;
[478]956
[656]957    if (status!=AFTER_FAST_AUGMENTING) {
958      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
959      number_of_augmentations=1;
[647]960    } else {
961      ++number_of_augmentations;
962    }
963    TrickyReachedMap<ReachedMap>
964      tricky_reached_map(level, number_of_augmentations);
965    //ReachedMap level(res_graph);
966//    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
967    BfsIterator<ResGW, TrickyReachedMap<ReachedMap> >
968      bfs(res_graph, tricky_reached_map);
969    bfs.pushAndSetReached(s);
[478]970
[647]971    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
972    pred.set(s, INVALID);
[478]973
[647]974    typename ResGW::template NodeMap<Num> free(res_graph);
975
976    //searching for augmenting path
977    while ( !bfs.finished() ) {
978      ResGWOutEdgeIt e=bfs;
979      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
980        Node v=res_graph.tail(e);
981        Node w=res_graph.head(e);
982        pred.set(w, e);
983        if (res_graph.valid(pred[v])) {
984          free.set(w, std::min(free[v], res_graph.resCap(e)));
985        } else {
986          free.set(w, res_graph.resCap(e));
987        }
988        if (res_graph.head(e)==t) { _augment=true; break; }
989      }
990
991      ++bfs;
992    } //end of searching augmenting path
993
994    if (_augment) {
995      Node n=t;
996      Num augment_value=free[t];
997      while (res_graph.valid(pred[n])) {
998        ResGWEdge e=pred[n];
999        res_graph.augment(e, augment_value);
1000        n=res_graph.tail(e);
1001      }
1002    }
1003
[656]1004    status=AFTER_FAST_AUGMENTING;
[647]1005    return _augment;
1006  }
[478]1007
1008
1009  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
[615]1010  template<typename MutableGraph>
1011  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
1012  {
[485]1013    typedef MutableGraph MG;
1014    bool _augment=false;
[478]1015
[485]1016    ResGW res_graph(*g, *capacity, *flow);
[478]1017
[485]1018    //bfs for distances on the residual graph
1019    //ReachedMap level(res_graph);
1020    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
1021    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
1022    bfs.pushAndSetReached(s);
[615]1023    typename ResGW::template NodeMap<int>
[485]1024      dist(res_graph); //filled up with 0's
[478]1025
[485]1026    //F will contain the physical copy of the residual graph
1027    //with the set of edges which are on shortest paths
1028    MG F;
[615]1029    typename ResGW::template NodeMap<typename MG::Node>
[485]1030      res_graph_to_F(res_graph);
1031    {
1032      typename ResGW::NodeIt n;
1033      for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
1034        res_graph_to_F.set(n, F.addNode());
[478]1035      }
[485]1036    }
[478]1037
[485]1038    typename MG::Node sF=res_graph_to_F[s];
1039    typename MG::Node tF=res_graph_to_F[t];
1040    typename MG::template EdgeMap<ResGWEdge> original_edge(F);
1041    typename MG::template EdgeMap<Num> residual_capacity(F);
[478]1042
[615]1043    while ( !bfs.finished() ) {
[485]1044      ResGWOutEdgeIt e=bfs;
1045      if (res_graph.valid(e)) {
1046        if (bfs.isBNodeNewlyReached()) {
1047          dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
[615]1048          typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
1049                                        res_graph_to_F[res_graph.head(e)]);
[485]1050          original_edge.update();
1051          original_edge.set(f, e);
1052          residual_capacity.update();
1053          residual_capacity.set(f, res_graph.resCap(e));
1054        } else {
1055          if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
[615]1056            typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
1057                                          res_graph_to_F[res_graph.head(e)]);
[478]1058            original_edge.update();
1059            original_edge.set(f, e);
1060            residual_capacity.update();
1061            residual_capacity.set(f, res_graph.resCap(e));
1062          }
1063        }
[485]1064      }
1065      ++bfs;
1066    } //computing distances from s in the residual graph
[478]1067
[485]1068    bool __augment=true;
[478]1069
[485]1070    while (__augment) {
1071      __augment=false;
1072      //computing blocking flow with dfs
1073      DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
1074      typename MG::template NodeMap<typename MG::Edge> pred(F);
1075      pred.set(sF, INVALID);
1076      //invalid iterators for sources
[478]1077
[485]1078      typename MG::template NodeMap<Num> free(F);
[478]1079
[615]1080      dfs.pushAndSetReached(sF);
[485]1081      while (!dfs.finished()) {
1082        ++dfs;
1083        if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
1084          if (dfs.isBNodeNewlyReached()) {
1085            typename MG::Node v=F.aNode(dfs);
1086            typename MG::Node w=F.bNode(dfs);
1087            pred.set(w, dfs);
1088            if (F.valid(pred[v])) {
1089              free.set(w, std::min(free[v], residual_capacity[dfs]));
1090            } else {
[615]1091              free.set(w, residual_capacity[dfs]);
[485]1092            }
[615]1093            if (w==tF) {
1094              __augment=true;
[485]1095              _augment=true;
[615]1096              break;
[485]1097            }
[615]1098
[485]1099          } else {
1100            F.erase(/*typename MG::OutEdgeIt*/(dfs));
1101          }
[615]1102        }
[485]1103      }
1104
1105      if (__augment) {
1106        typename MG::Node n=tF;
1107        Num augment_value=free[tF];
[615]1108        while (F.valid(pred[n])) {
[485]1109          typename MG::Edge e=pred[n];
[615]1110          res_graph.augment(original_edge[e], augment_value);
[485]1111          n=F.tail(e);
[615]1112          if (residual_capacity[e]==augment_value)
1113            F.erase(e);
1114          else
[485]1115            residual_capacity.set(e, residual_capacity[e]-augment_value);
[478]1116        }
[485]1117      }
[615]1118
[485]1119    }
[615]1120
[647]1121    status=AFTER_AUGMENTING;
[485]1122    return _augment;
1123  }
[478]1124
1125
1126
1127
1128  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
[615]1129  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
[478]1130  {
[485]1131    bool _augment=false;
[478]1132
[485]1133    ResGW res_graph(*g, *capacity, *flow);
[615]1134
[485]1135    //ReachedMap level(res_graph);
1136    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
1137    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
[478]1138
[485]1139    bfs.pushAndSetReached(s);
1140    DistanceMap<ResGW> dist(res_graph);
[615]1141    while ( !bfs.finished() ) {
[485]1142      ResGWOutEdgeIt e=bfs;
1143      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
1144        dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
1145      }
1146      ++bfs;
1147    } //computing distances from s in the residual graph
[478]1148
1149      //Subgraph containing the edges on some shortest paths
[485]1150    ConstMap<typename ResGW::Node, bool> true_map(true);
[615]1151    typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
[485]1152      DistanceMap<ResGW> > FilterResGW;
1153    FilterResGW filter_res_graph(res_graph, true_map, dist);
[478]1154
[615]1155    //Subgraph, which is able to delete edges which are already
[485]1156    //met by the dfs
[615]1157    typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
[485]1158      first_out_edges(filter_res_graph);
1159    typename FilterResGW::NodeIt v;
[615]1160    for(filter_res_graph.first(v); filter_res_graph.valid(v);
1161        filter_res_graph.next(v))
[478]1162      {
1163        typename FilterResGW::OutEdgeIt e;
1164        filter_res_graph.first(e, v);
1165        first_out_edges.set(v, e);
1166      }
[485]1167    typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
1168      template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
1169    ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
[478]1170
[485]1171    bool __augment=true;
[478]1172
[485]1173    while (__augment) {
[478]1174
[485]1175      __augment=false;
1176      //computing blocking flow with dfs
[615]1177      DfsIterator< ErasingResGW,
1178        typename ErasingResGW::template NodeMap<bool> >
[485]1179        dfs(erasing_res_graph);
1180      typename ErasingResGW::
[615]1181        template NodeMap<typename ErasingResGW::OutEdgeIt>
1182        pred(erasing_res_graph);
[485]1183      pred.set(s, INVALID);
1184      //invalid iterators for sources
[478]1185
[615]1186      typename ErasingResGW::template NodeMap<Num>
[485]1187        free1(erasing_res_graph);
[478]1188
[615]1189      dfs.pushAndSetReached
1190        ///\bug hugo 0.2
1191        (typename ErasingResGW::Node
1192         (typename FilterResGW::Node
1193          (typename ResGW::Node(s)
1194           )
1195          )
1196         );
[485]1197      while (!dfs.finished()) {
1198        ++dfs;
[615]1199        if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
1200          {
[478]1201            if (dfs.isBNodeNewlyReached()) {
[615]1202
[478]1203              typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
1204              typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
1205
1206              pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
1207              if (erasing_res_graph.valid(pred[v])) {
[615]1208                free1.set
1209                  (w, std::min(free1[v], res_graph.resCap
1210                               (typename ErasingResGW::OutEdgeIt(dfs))));
[478]1211              } else {
[615]1212                free1.set
1213                  (w, res_graph.resCap
1214                   (typename ErasingResGW::OutEdgeIt(dfs)));
[478]1215              }
[615]1216
1217              if (w==t) {
1218                __augment=true;
[478]1219                _augment=true;
[615]1220                break;
[478]1221              }
1222            } else {
1223              erasing_res_graph.erase(dfs);
1224            }
1225          }
[615]1226      }
[478]1227
[485]1228      if (__augment) {
[615]1229        typename ErasingResGW::Node
1230          n=typename FilterResGW::Node(typename ResGW::Node(t));
[485]1231        //        typename ResGW::NodeMap<Num> a(res_graph);
1232        //        typename ResGW::Node b;
1233        //        Num j=a[b];
1234        //        typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
1235        //        typename FilterResGW::Node b1;
1236        //        Num j1=a1[b1];
1237        //        typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
1238        //        typename ErasingResGW::Node b2;
1239        //        Num j2=a2[b2];
1240        Num augment_value=free1[n];
[615]1241        while (erasing_res_graph.valid(pred[n])) {
[485]1242          typename ErasingResGW::OutEdgeIt e=pred[n];
1243          res_graph.augment(e, augment_value);
1244          n=erasing_res_graph.tail(e);
1245          if (res_graph.resCap(e)==0)
1246            erasing_res_graph.erase(e);
[478]1247        }
1248      }
[615]1249
1250    } //while (__augment)
1251
[647]1252    status=AFTER_AUGMENTING;
[485]1253    return _augment;
1254  }
[478]1255
1256
1257} //namespace hugo
1258
[480]1259#endif //HUGO_MAX_FLOW_H
[478]1260
1261
1262
1263
Note: See TracBrowser for help on using the repository browser.